हिंदी

Write the Value of Sin π 15 Sin 4 π 15 Sin 3 π 10 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]

योग

उत्तर

\[\frac{\pi}{15} = 12^\circ, \frac{4\pi}{15} = 48^\circ, \frac{3\pi}{10} = 54^\circ\]
\[\sin12^\circ \sin48^\circ \sin54^\circ\]
\[ = \frac{1}{2}\left[ 2\sin12^\circ \sin48^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( 12^\circ - 48^\circ \right) - \cos\left( 12^\circ + 48^\circ \right) \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( - 36^\circ \right) - \cos60^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\sin54^\circ\left[ \cos36^\circ - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \sin\left( 90^\circ - 36^\circ \right) \cos36^\circ \right] - \frac{1}{4}\sin\left( 90^\circ - 36^\circ \right)\]
\[ = \frac{1}{2} \cos^2 36^\circ - \frac{1}{4}\cos36^\circ\]
\[ = \frac{1}{2} \left( \frac{\sqrt{5} + 1}{4} \right)^2 - \left( \frac{\sqrt{5} + 1}{16} \right) \left[ \cos36^\circ = \frac{\sqrt{5} + 1}{4} \right]\]
\[ = \frac{1}{2}\left( \frac{5 + 1 + 2\sqrt{5}}{16} \right) - \left( \frac{\sqrt{5} + 1}{16} \right)\]
\[ = \frac{6 + 2\sqrt{5}}{32} - \frac{\sqrt{5} + 1}{16}\]
\[ = \frac{6 + 2\sqrt{5} - 2\sqrt{5} - 2}{32}\]
\[ = \frac{4}{32}\]
\[ = \frac{1}{8}\]

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.3 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.3 | Q 7 | पृष्ठ २०

संबंधित प्रश्न

Prove that: 

\[2\sin\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{\sqrt{3} + 2}{2}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


sin 163° cos 347° + sin 73° sin 167° =


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×