Advertisements
Advertisements
प्रश्न
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
उत्तर
\[\frac{\pi}{15} = 12^\circ, \frac{4\pi}{15} = 48^\circ, \frac{3\pi}{10} = 54^\circ\]
\[\sin12^\circ \sin48^\circ \sin54^\circ\]
\[ = \frac{1}{2}\left[ 2\sin12^\circ \sin48^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( 12^\circ - 48^\circ \right) - \cos\left( 12^\circ + 48^\circ \right) \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( - 36^\circ \right) - \cos60^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\sin54^\circ\left[ \cos36^\circ - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \sin\left( 90^\circ - 36^\circ \right) \cos36^\circ \right] - \frac{1}{4}\sin\left( 90^\circ - 36^\circ \right)\]
\[ = \frac{1}{2} \cos^2 36^\circ - \frac{1}{4}\cos36^\circ\]
\[ = \frac{1}{2} \left( \frac{\sqrt{5} + 1}{4} \right)^2 - \left( \frac{\sqrt{5} + 1}{16} \right) \left[ \cos36^\circ = \frac{\sqrt{5} + 1}{4} \right]\]
\[ = \frac{1}{2}\left( \frac{5 + 1 + 2\sqrt{5}}{16} \right) - \left( \frac{\sqrt{5} + 1}{16} \right)\]
\[ = \frac{6 + 2\sqrt{5}}{32} - \frac{\sqrt{5} + 1}{16}\]
\[ = \frac{6 + 2\sqrt{5} - 2\sqrt{5} - 2}{32}\]
\[ = \frac{4}{32}\]
\[ = \frac{1}{8}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
Prove that:
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
sin 163° cos 347° + sin 73° sin 167° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.