English

Write the Value of Sin π 15 Sin 4 π 15 Sin 3 π 10 - Mathematics

Advertisements
Advertisements

Question

Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]

Sum

Solution

\[\frac{\pi}{15} = 12^\circ, \frac{4\pi}{15} = 48^\circ, \frac{3\pi}{10} = 54^\circ\]
\[\sin12^\circ \sin48^\circ \sin54^\circ\]
\[ = \frac{1}{2}\left[ 2\sin12^\circ \sin48^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( 12^\circ - 48^\circ \right) - \cos\left( 12^\circ + 48^\circ \right) \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( - 36^\circ \right) - \cos60^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\sin54^\circ\left[ \cos36^\circ - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \sin\left( 90^\circ - 36^\circ \right) \cos36^\circ \right] - \frac{1}{4}\sin\left( 90^\circ - 36^\circ \right)\]
\[ = \frac{1}{2} \cos^2 36^\circ - \frac{1}{4}\cos36^\circ\]
\[ = \frac{1}{2} \left( \frac{\sqrt{5} + 1}{4} \right)^2 - \left( \frac{\sqrt{5} + 1}{16} \right) \left[ \cos36^\circ = \frac{\sqrt{5} + 1}{4} \right]\]
\[ = \frac{1}{2}\left( \frac{5 + 1 + 2\sqrt{5}}{16} \right) - \left( \frac{\sqrt{5} + 1}{16} \right)\]
\[ = \frac{6 + 2\sqrt{5}}{32} - \frac{\sqrt{5} + 1}{16}\]
\[ = \frac{6 + 2\sqrt{5} - 2\sqrt{5} - 2}{32}\]
\[ = \frac{4}{32}\]
\[ = \frac{1}{8}\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.3 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.3 | Q 7 | Page 20

RELATED QUESTIONS

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]


The value of cos 52° + cos 68° + cos 172° is


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


cos 35° + cos 85° + cos 155° =


The value of sin 50° − sin 70° + sin 10° is equal to


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×