Advertisements
Advertisements
Question
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Solution
\[\frac{\pi}{15} = 12^\circ, \frac{4\pi}{15} = 48^\circ, \frac{3\pi}{10} = 54^\circ\]
\[\sin12^\circ \sin48^\circ \sin54^\circ\]
\[ = \frac{1}{2}\left[ 2\sin12^\circ \sin48^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( 12^\circ - 48^\circ \right) - \cos\left( 12^\circ + 48^\circ \right) \right] \sin54^\circ\]
\[ = \frac{1}{2}\left[ \cos\left( - 36^\circ \right) - \cos60^\circ \right] \sin54^\circ\]
\[ = \frac{1}{2}\sin54^\circ\left[ \cos36^\circ - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \sin\left( 90^\circ - 36^\circ \right) \cos36^\circ \right] - \frac{1}{4}\sin\left( 90^\circ - 36^\circ \right)\]
\[ = \frac{1}{2} \cos^2 36^\circ - \frac{1}{4}\cos36^\circ\]
\[ = \frac{1}{2} \left( \frac{\sqrt{5} + 1}{4} \right)^2 - \left( \frac{\sqrt{5} + 1}{16} \right) \left[ \cos36^\circ = \frac{\sqrt{5} + 1}{4} \right]\]
\[ = \frac{1}{2}\left( \frac{5 + 1 + 2\sqrt{5}}{16} \right) - \left( \frac{\sqrt{5} + 1}{16} \right)\]
\[ = \frac{6 + 2\sqrt{5}}{32} - \frac{\sqrt{5} + 1}{16}\]
\[ = \frac{6 + 2\sqrt{5} - 2\sqrt{5} - 2}{32}\]
\[ = \frac{4}{32}\]
\[ = \frac{1}{8}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
Show that :
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
Prove that:
Prove that:
Prove that:
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.