English

Prove that Tan X Tan ( π 3 − X ) Tan ( π 3 + X ) = Tan 3 X - Mathematics

Advertisements
Advertisements

Question

Prove that 
tanxtan(π3x)tan(π3+x)=tan3x

Sum

Solution

L.H.S = tanxtan(π3-x)tan(π3+x)

= tanx. sin(π3-x)cos(π3-x).sin(π3+x)cos(π3+x)

= sinx.sin(π3-x).sin(π3+x)cosx.cos(π3-x).cos(π3+x)

= sinx.(sin2 π3-sin2x)cosx.(cos2 π3-sin2x)

= sinxcosx(32)2-sin2x(12)2-sin2x

= sinxcosx(34)-sin2x(14)-sin2x

= sinxcosx(3-4sin2x1-4sin2x)

= sinxcosx(3-4sin2x1-4(1-cos2x))

= sinxcosx(3-4sin2x4cos2x-3)

= 3sinx-4sin3x4cos2 - 3cosx

= sin3xcos3x

= tanx

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 7 | Page 7

RELATED QUESTIONS

Prove that:

2sin5π12sinπ12=12

 


Prove that:

2cos5π12cosπ12=12

Show that :

sin25cos115=12(sin1401)

Prove that:
cos 10° cos 30° cos 50° cos 70° = 316

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:
sinx2sin7x2+sin3x2sin11x2=sin2xsin5x.

 


Prove that:

sin9Asin7Acos7Acos9A=cot8A

Prove that:

sinAsinBcosA+cosB=tanAB2

Prove that:

cosA+cosBcosBcosA=cot(A+B2)cot(AB2)

Prove that:

sinA+sin3A+sin5AcosA+cos3A+cos5A=tan3A

 


Prove that:

sin5Acos2Asin6AcosAsinAsin2Acos2Acos3A=tanA

Prove that:

sin3Acos4AsinAcos2Asin4AsinA+cos6AcosA=tan2A

Prove that:

sinAsin2A+sin3Asin6AsinAcos2A+sin3Acos6A=tan5A

Prove that:

sinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin3Asin5A

Prove that:

sin(θ+ϕ)2sinθ+sin(θϕ)cos(θ+ϕ)2cosθ+cos(θϕ)=tanθ

If cosec A + sec A = cosec B + sec B, prove that tan A tan B = cotA+B2.


 If sin2A=λsin2B, prove that tan(A+B)tan(AB)=λ+1λ1

 


Prove that:

cos(A+B+C)+cos(A+B+C)+cos(AB+C)+cos(A+BC)sin(A+B+C)+sin(A+B+C)+sin(AB+C)sin(A+BC)=cotC

 If cos(AB)cos(A+B)+cos(C+D)cos(CD)=0,Prove that tanAtanBtanCtanD=1

 


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If xcosθ=ycos(θ+2π3)=zcos(θ+4π3), prove that xy+yz+zx=0

 

 


If msinθ=nsin(θ+2α), prove that tan(θ+α)cotα=m+nmn


Write the value of sin π12 sin 5π12.


Write the value of the expression 14sin10sin702sin10


cos 40° + cos 80° + cos 160° + cos 240° =


If sin 2 θ + sin 2 ϕ = 12 and cos 2 θ + cos 2 ϕ = 32, then cos2 (θ − ϕ) =

 

 


If sin α + sin β = a and cos α − cos β = b, then tan αβ2=


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If sin x + sin y = 3 (cos y − cos x), then sin 3x + sin 3y =

 


Prove that:

sin A sin(60° + A) sin(60° – A) = 14 sin 3A


Prove that:

2 cos π13 cos 9π13+cos3π13+cos5π13 = 0


Evaluate:

sin 50° – sin 70° + sin 10°


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If tan θ = 15 and θ lies in the first quadrant then cos θ is:


If secx cos5x + 1 = 0, where 0 < x ≤ π2, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.