Advertisements
Advertisements
Question
cos 40° + cos 80° + cos 160° + cos 240° =
Options
0
1
- \[\frac{1}{2}\]
- \[- \frac{1}{2}\]
Solution
\[\cos40^\circ + \cos80^\circ + \cos160^\circ + \cos240^\circ\]
\[ = 2\cos\left( \frac{40^\circ + 80^\circ}{2} \right)\cos\left( \frac{40^\circ - 80^\circ}{2} \right) + \cos160^\circ - \cos\left( 180^\circ + 60^\circ \right) \left[ \because \cos A + \cos B = 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ = 2\cos60^\circ \cos\left( - 20^\circ \right) + \cos160^\circ - \frac{1}{2}\]
\[ = 2 \times \frac{1}{2}\cos20^\circ + \cos160^\circ - \frac{1}{2}\]
\[ = - \cos\left( 180 - 20 \right)^\circ + \cos160^\circ - \frac{1}{2}\]
\[ = - \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
The value of cos 52° + cos 68° + cos 172° is
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
Express the following as the product of sine and cosine.
sin A + sin 2A
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`