Advertisements
Advertisements
Question
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
Solution
Given that cos A + cos B = `1/2`
2 cos `(("A + B")/2) cos (("A - B")/2) = 1/2` ..(1)
Also given that sin A + sin B = `1/4`
2 sin `(("A + B")/2) cos (("A - B")/2) = 1/4` ..(2)
`(2) divide (1)` we get,
`(2 sin (("A + B")/2) cos (("A - B")/2))/(2 cos (("A + B")/2) cos (("A - B")/2)) = (1/4)/(1/2)`
tan `(("A + B")/2)` = `2/4`
∴ tan `(("A + B")/2) = 1/2`
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
Prove that:
Prove that:
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]