Advertisements
Advertisements
प्रश्न
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
उत्तर
Given that cos A + cos B = `1/2`
2 cos `(("A + B")/2) cos (("A - B")/2) = 1/2` ..(1)
Also given that sin A + sin B = `1/4`
2 sin `(("A + B")/2) cos (("A - B")/2) = 1/4` ..(2)
`(2) divide (1)` we get,
`(2 sin (("A + B")/2) cos (("A - B")/2))/(2 cos (("A + B")/2) cos (("A - B")/2)) = (1/4)/(1/2)`
tan `(("A + B")/2)` = `2/4`
∴ tan `(("A + B")/2) = 1/2`
APPEARS IN
संबंधित प्रश्न
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 105° + cos 105° = cos 45°
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A