Advertisements
Advertisements
प्रश्न
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
उत्तर
Consider LHS:
\[\sin \left( B - C \right) \cos \left( A - D \right) + \sin \left( C - A \right) \cos \left( B - D \right) + \sin \left( A - B \right) \cos \left( C - D \right)\]
\[= \frac{1}{2}\left[ 2\sin \left( B - C \right) \cos \left( A - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( C - A \right) \cos \left( B - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( A - B \right) \cos\left( C - D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left\{ \left( B - C \right) + \left( A - D \right) \right\} + \sin \left\{ \left( B - C \right) - \left( A - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( C - A \right) + \left( B - D \right) \right\} + \sin \left\{ \left( C - A \right) - \left( B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( A - B \right) + \left( C - D \right) \right\} + \sin \left\{ \left( A - B \right) - \left( C - D \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left( C - A + B - D \right) + \sin \left( C - A - B + D \right) \right] + \frac{1}{2}\left[ \sin \left( A - B + C - D \right) + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left\{ - \left( - C + A - B + D \right) \right\} + \sin \left\{ - \left( - C + A + B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin\left\{ - \left( - A + B - C + D \right) \right\} + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\sin\left( B - C + A - D \right) + \frac{1}{2}\sin\left( B - C - A + D \right) - \frac{1}{2}\sin\left( - C + A - B + D \right) - \frac{1}{2}\sin\left( - C + A + B - D \right) - \frac{1}{2}\sin\left( - A + B - C + D \right) + \frac{1}{2}\sin\left( A - B - C + D \right)\]
\[ = 0\]
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate-
cos 20° + cos 100° + cos 140°
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`