हिंदी

Show That: Sin (B − C) Cos (A − D) + Sin (C − A) Cos (B − D) + Sin (A − B) Cos (C − D) = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0

योग

उत्तर

Consider LHS: 
\[\sin \left( B - C \right) \cos \left( A - D \right) + \sin \left( C - A \right) \cos \left( B - D \right) + \sin \left( A - B \right) \cos \left( C - D \right)\]
\[= \frac{1}{2}\left[ 2\sin \left( B - C \right) \cos \left( A - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( C - A \right) \cos \left( B - D \right) \right] + \frac{1}{2}\left[ 2\sin \left( A - B \right) \cos\left( C - D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left\{ \left( B - C \right) + \left( A - D \right) \right\} + \sin \left\{ \left( B - C \right) - \left( A - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( C - A \right) + \left( B - D \right) \right\} + \sin \left\{ \left( C - A \right) - \left( B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin \left\{ \left( A - B \right) + \left( C - D \right) \right\} + \sin \left\{ \left( A - B \right) - \left( C - D \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left( C - A + B - D \right) + \sin \left( C - A - B + D \right) \right] + \frac{1}{2}\left[ \sin \left( A - B + C - D \right) + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\left[ \sin \left( B - C + A - D \right) + \sin \left( B - C - A + D \right) \right] + \frac{1}{2}\left[ \sin \left\{ - \left( - C + A - B + D \right) \right\} + \sin \left\{ - \left( - C + A + B - D \right) \right\} \right] + \frac{1}{2}\left[ \sin\left\{ - \left( - A + B - C + D \right) \right\} + \sin \left( A - B - C + D \right) \right]\]
\[ = \frac{1}{2}\sin\left( B - C + A - D \right) + \frac{1}{2}\sin\left( B - C - A + D \right) - \frac{1}{2}\sin\left( - C + A - B + D \right) - \frac{1}{2}\sin\left( - C + A + B - D \right) - \frac{1}{2}\sin\left( - A + B - C + D \right) + \frac{1}{2}\sin\left( A - B - C + D \right)\]
\[ = 0\]
 = RHS

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 6.2 | पृष्ठ ७

संबंधित प्रश्न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate-

cos 20° + cos 100° + cos 140°


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×