Advertisements
Advertisements
प्रश्न
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
उत्तर
Let 22°30′ = `theta/2`
∴ θ = 45°
tan22°30′ = `tan theta/2`
= `(sin theta/2)/(cos theta/2)`
= `(2sin theta/2 cos theta/2)/(2cos^2 theta/2)`
= `sintheta/(1 + costheta)`
Put θ = 45°
∴ `sintheta/(1 + costheta) = sin 45^circ/(1 + cos 45^circ)`
= `(1/sqrt(2))/(1 + 1/sqrt(2))`
= `1/(sqrt(2) + 1)`
= `(1 xx (sqrt(2) - 1))/((sqrt(2) + 1)(sqrt(2) - 1))`
= `sqrt(2) - 1`
Hence, tan22°30' = `sqrt(2) - 1`.
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
cos 40° + cos 80° + cos 160° + cos 240° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.