English

Find the value of tan22°30′. [Hint: Let θ = 45°, use tan θ2=sin θ2cos θ2=2sin θ2cos θ22cos2 θ2=sinθ1+cosθ] - Mathematics

Advertisements
Advertisements

Question

Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`

Sum

Solution

Let 22°30′ = `theta/2`

∴ θ = 45°

tan22°30′ = `tan  theta/2`

= `(sin  theta/2)/(cos  theta/2)`

= `(2sin  theta/2 cos  theta/2)/(2cos^2  theta/2)`

= `sintheta/(1 + costheta)`

Put θ = 45°

∴ `sintheta/(1 + costheta) = sin 45^circ/(1 + cos 45^circ)`

= `(1/sqrt(2))/(1 + 1/sqrt(2))`

= `1/(sqrt(2) + 1)`

= `(1 xx (sqrt(2) - 1))/((sqrt(2) + 1)(sqrt(2) - 1))`

= `sqrt(2) - 1`

Hence, tan22°30' = `sqrt(2) - 1`.

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 53]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 8 | Page 53

RELATED QUESTIONS

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin 3A \cos 4A - \sin A \cos 2A}{\sin 4A \sin A + \cos 6A \cos A} = \tan 2A\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


sin 163° cos 347° + sin 73° sin 167° =


cos 35° + cos 85° + cos 155° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×