Advertisements
Online Mock Tests
Chapters
2: Relations and Functions
▶ 3: Trigonometric Functions
4: Principle of Mathematical Induction
5: Complex Numbers and Quadratic Equations
6: Linear Inequalities
7: Permutations and Combinations
8: Binomial Theorem
9: Sequences and Series
10: Straight Lines
11: Conic Sections
12: Introduction to Three Dimensional Geometry
13: Limits and Derivatives
14: Mathematical Reasoning
15: Statistics
16: Probability
![NCERT Exemplar solutions for Mathematics [English] Class 11 chapter 3 - Trigonometric Functions NCERT Exemplar solutions for Mathematics [English] Class 11 chapter 3 - Trigonometric Functions - Shaalaa.com](/images/mathematics-english-class-11_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 3: Trigonometric Functions
Below listed, you can find solutions for Chapter 3 of CBSE NCERT Exemplar for Mathematics [English] Class 11.
NCERT Exemplar solutions for Mathematics [English] Class 11 3 Trigonometric Functions Solved Examples [Pages 39 - 51]
Short Answer
A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
Find the value of `sqrt(3)` cosec 20° – sec 20°
If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
Find the value of tan 9° – tan 27° – tan 63° + tan 81°
Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Long Answer
Find the value of `(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)`
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.
If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.
Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Objective Type Questions from 15 to 19
If tan θ = `(-4)/3`, then sin θ is ______.
`(-4)/5` but not `4/5`
`(-4)/5` or `4/5`
`4/5` but not `- 4/5`
None of these
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
a2 + b2 + 2ac = 0
a2 – b2 + 2ac = 0
a2 + c2 + 2ab = 0
a2 – b2 – 2ac = 0
The greatest value of sin x cos x is ______.
1
2
`sqrt(2)`
`1/2`
The value of sin 20° sin 40° sin 60° sin 80° is ______.
`(-3)/16`
`5/16`
`3/16`
`1/16`
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
`1/16`
0
`(-1)/8`
`(-1)/16`
Fill in the blank:
If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.
State whether the following statement is True or False:
“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ”
True
False
Match each item given under column C1 to its correct answer given under column C2.
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
NCERT Exemplar solutions for Mathematics [English] Class 11 3 Trigonometric Functions Exercise [Pages 52 - 60]
Short Answer
Prove that `(tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`
If `(2sinalpha)/(1 + cosalpha + sinalpha)` = y, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` is also equal to y.
`["Hint": "Express" (1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) * (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)]`
If m sinθ = n sin(θ + 2α), then prove that tan(θ + α)cotα = `(m + n)/(m - n)`
[Hint: Express `(sin(theta + 2alpha))/sintheta = m/n` and apply componendo and dividendo]
If cos(α + β) = `4/5` and sin(α – β) = `5/13`, where α lie between 0 and `pi/4`, find the value of tan2α.
[Hint: Express tan2α as tan(α + β + α – β)]
If tanx = `b/a`, then find the value of `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))`
Prove that cosθ `cos theta/2 - cos 3theta cos (9theta)/2` = sin 7θ sin 8θ.
[Hint: Express L.H.S. = `1/2[2costheta cos theta/2 - 2 cos 3theta cos (9theta)/2]`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If cosα + cosβ = 0 = sinα + sinβ, then prove that cos2α + cos2β = -2cos(α + β).
[Hint: (cosα + cosβ)2 - (sinα + sinβ)2 = 0]
If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b` [Hint: Use Componendo and Dividendo].
If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.
[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]
If sinθ + cosθ = 1, then find the general value of θ.
Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.
If cotθ + tanθ = 2cosecθ, then find the general value of θ.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.
Long Answer
If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α - β) - 4ab cos(α - β) = 1 - 2a2 - 2b2
[Hint: Express cos(α - β) = cos((θ + α) - (θ + β))]
If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`
[Hint: Express `(cos(theta + Φ))/(cos(theta - Φ)) = m/1` and apply Componendo and Dividendo]
Find the value of the expression `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]`
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = –(xy + 1)]
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2
[Hint: Put `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]
Objective Type Questions from 30 to 59
If sinθ + cosecθ = 2, then sin2θ + cosec2θ is equal to ______.
1
4
2
None of these
If f(x) = cos2x + sec2x, then ______.
[Hint: A.M ≥ G.M.]
f(x) < 1
f(x) = 1
2 < f(x) < 1
f(x) ≥ 2
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
`pi/6`
`pi`
0
`pi/4`
Which of the following is not correct?
sinθ = `-1/5`
cosθ = 1
secθ = `1/2`
tanθ = 20
The value of tan1° tan2° tan3° ... tan89° is ______.
0
1
`1/2`
Not defined
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
1
`sqrt(3)`
`sqrt(3)/2`
2
The value of cos1° cos2° cos3° ... cos179° is ______.
`1/sqrt(2)`
0
1
–1
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ ______.
`1/sqrt(10)`
`- 1/sqrt(10)`
`(-3)/sqrt(10)`
`3/sqrt(10)`
The value of tan 75° - cot 75° is equal to ______.
`2sqrt(3)`
`2 + sqrt(3)`
`2 - sqrt(3)`
1
Which of the following is correct?
[Hint: 1 radian = `180^circ/pi = 57^circ30^'` approx]
sin1° > sin1
sin1° < sin1
sin1° = sin1
sin1° = `pi/180^circ sin1`
If tanα = `m/(m + 1)`, tanβ = `1/(2m + 1)`, then α + β is equal to ______.
`pi/2`
`pi/3`
`pi/6`
`pi/4`
The minimum value of 3cosx + 4sinx + 8 is ______.
5
9
7
3
The value of tan3A - tan2A - tanA is equal to ______.
tan3A tan2A tanA
-tan3A tan2A tanA
tanA tan2A - tan2A tan3A - tan3A tanA
None of these
The value of sin(45° + θ) - cos(45° - θ) is ______.
2cosθ
2sinθ
1
0
The value of `cot(pi/4 + theta)cot(pi/4 - theta)` is ______.
-1
0
1
Not defined
cos2θ cos2Φ + sin2(θ – Φ) – sin2(θ + Φ) is equal to ______.
sin2(θ + Φ)
cos2(θ + Φ)
sin2(θ – Φ)
cos2(θ – Φ)
The value of cos12° + cos84° + cos156° + cos132° is ______.
`1/2`
1
`-1/2`
`1/8`
If tanA = `1/2`, tanB = `1/3`, then tan(2A + B) is equal to ______.
1
2
3
4
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
`1/2`
`-1/2`
`-1/4`
1
The value of sin50° – sin70° + sin10° is equal to ______.
1
0
`1/2`
2
If sinθ + cosθ = 1, then the value of sin2θ is equal to ______.
1
`1/2`
0
–1
If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.
1
2
–2
Not defined
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
`1/5`
`-1/sqrt(10)`
`-1/sqrt(5)`
`1/sqrt(10)`
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.
0
1
2
3
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
`sin (7pi)/18 + sin (4pi)/9`
1
`cos pi/6 + cos (3pi)/7`
`cos pi/9 + sin pi/9`
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
`(-53)/10`
`23/10`
`37/10`
`7/10`
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
`(sqrt(5) + 1)/8`
`(sqrt(5) - 1)/8`
`(sqrt(5) + 1)/5`
`(sqrt(5) + 1)/(2sqrt(2)`
If tanα = `1/7`, tanβ = `1/3`, then cos2α is equal to ______.
sin2β
sin4β
sin3β
cos2β
If tanθ = `a/b`, then bcos2θ + asin2θ is equal to ______.
a
b
`a/b`
None
If for real values of x, cosθ = `x + 1/x`, then ______.
θ is an acute angle.
θ is a right angle.
θ is an obtuse angle.
No value of θ is possible.
Fill in the blanks 60 to 67:
The value of `(sin 50^circ)/(sin 130^circ)` is ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.
If sinx + cosx = a, then sin6x + cos6x = ______.
If sinx + cosx = a, then |sinx – cosx| = ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.
3(sinx – cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______.
Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.
The maximum distance of a point on the graph of the function y = `sqrt(3)` sinx + cosx from x-axis is ______.
State whether the statement is True or False? Also give justification.
If tanA = `(1 - cos B)/sinB`, then tan2A = tanB
True
False
State whether the statement is True or False? Also give justification.
The equality sinA + sin2A + sin3A = 3 holds for some real value of A.
True
False
State whether the statement is True or False? Also give justification.
Sin10° is greater than cos10°
True
False
State whether the statement is True or False? Also give justification.
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
True
False
State whether the statement is True or False? Also give justification.
One value of θ which satisfies the equation sin4θ - 2sin2θ - 1 lies between 0 and 2π.
True
False
State whether the statement is True or False? Also give justification.
If cosecx = 1 + cotx then x = 2nπ, 2nπ + `pi/2`
True
False
State whether the statement is True or False? Also give justification.
If tanθ + tan2θ + `sqrt(3)` tanθ tan2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9`
True
False
State whether the statement is True or False? Also give justification.
If tan(π cosθ) = cot(π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.
True
False
In the following match each item given under the column C1 to its correct answer given under the column C2:
Column A | Column B |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos (x + y) cos (x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |
Solutions for 3: Trigonometric Functions
![NCERT Exemplar solutions for Mathematics [English] Class 11 chapter 3 - Trigonometric Functions NCERT Exemplar solutions for Mathematics [English] Class 11 chapter 3 - Trigonometric Functions - Shaalaa.com](/images/mathematics-english-class-11_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT Exemplar solutions for Mathematics [English] Class 11 chapter 3 - Trigonometric Functions
Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 11 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Mathematics [English] Class 11 CBSE 3 (Trigonometric Functions) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 11 chapter 3 Trigonometric Functions are Transformation Formulae, 180 Degree Plusminus X Function, 2X Function, 3X Function, Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications, Concept of Angle, Introduction of Trigonometric Functions, Signs of Trigonometric Functions, Domain and Range of Trigonometric Functions, Trigonometric Functions of Sum and Difference of Two Angles, Trigonometric Equations, Trigonometric Functions, Truth of the Identity, Negative Function Or Trigonometric Functions of Negative Angles, 90 Degree Plusminus X Function, Conversion from One Measure to Another, Graphs of Trigonometric Functions, Values of Trigonometric Functions at Multiples and Submultiples of an Angle, Sine and Cosine Formulae and Their Applications.
Using NCERT Exemplar Mathematics [English] Class 11 solutions Trigonometric Functions exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 11 students prefer NCERT Exemplar Textbook Solutions to score more in exams.
Get the free view of Chapter 3, Trigonometric Functions Mathematics [English] Class 11 additional questions for Mathematics Mathematics [English] Class 11 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.