Advertisements
Advertisements
Question
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
Solution
We have A = cos2θ + sin4θ
= cos2θ + sin2θ sin2θ ≤ cos2θ + sin2θ
Therefore, A ≤ 1
Also, A = cos2θ + sin4θ
= (1 – sin2θ) + sin4θ
= `(sin^2theta - 1/2)^2 + (1 - 1/4)`
= `(sin^2theta - 1/2)^2 + 3/4 > 3/4`
Hence, `3/4 < "A" < 1`.
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.