English

Prove that: cos 6 A − sin 6 A = cos 2 A ( 1 − 1 4 sin 2 2 A ) - Mathematics

Advertisements
Advertisements

Question

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 
Numerical

Solution

\[LHS = \cos^6 A - \sin^6 A\]

\[ = \left( \cos^2 A \right)^3 - \left( \sin^2 A \right)^3 \]

\[ = \left( \cos^2 A - \sin^2 A \right)\left( \cos^4 A + \sin^2 A . \cos^2 A + \sin^4 A \right)\]

\[= \cos2A\left( \cos^4 A + 2 \sin^2 A \cos^2 A + \sin^4 A - \sin^2 A \cos^2 A \right)\]

\[ = \cos2A\left\{ \left( \sin^2 A + \cos^2 A \right)^2 - \frac{1}{4} \times 4 \sin^2 A \cos^2 A \right\}\]

\[= \cos2A\left\{ \left( \sin^2 A + \cos^2 A \right)^2 - \frac{1}{4} \left( 2\text{ sin } A\text{ cos } A \right)^2 \right\}\]

\[ = \cos2A\left\{ 1 - \frac{1}{4} \left( \sin2A \right)^2 \right\}\]

\[ = \cos2A\left\{ 1 - \frac{1}{4} \sin^2 2A \right\} = RHS\]

\[\text{ Hence proved } .\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 21 | Page 28

RELATED QUESTIONS

Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{\pi}{3} - x \right) = 3 \cot 3x\]

 


Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of `sin  pi/10  sin  (13pi)/10` is ______.

`["Hint: Use"  sin18^circ = (sqrt5 - 1)/4 "and"  cos36^circ = (sqrt5 + 1)/4]`


The value of sin50° – sin70° + sin10° is equal to ______.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×