Advertisements
Advertisements
Question
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
Solution
\[LHS = \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5}\]
\[ = \frac{1}{2}\left( 2 \sin\frac{\pi}{5} \sin\frac{4\pi}{5} \right)\frac{1}{2}\left( 2 \sin\frac{2\pi}{5} \sin\frac{3\pi}{5} \right)\]
\[ = \frac{1}{4}\left( \cos\left( \frac{\pi}{5} - \frac{4\pi}{5} \right) - \cos\left( \frac{\pi}{5} + \frac{4\pi}{5} \right) \right)\left( \cos\left( \frac{2\pi}{5} - \frac{3\pi}{5} \right) - \cos\left( \frac{2\pi}{5} + \frac{3\pi}{5} \right) \right)\]
\[ = \frac{1}{4}\left( \cos\left( \frac{- 3\pi}{5} \right) - \cos\left( \frac{5\pi}{5} \right) \right)\left( \cos\left( \frac{- \pi}{5} \right) - \cos\left( \frac{5\pi}{5} \right) \right)\]
\[ = \frac{1}{4}\left( \cos\left( \frac{3\pi}{5} \right) - \cos\left( \pi \right) \right)\left( \cos\left( \frac{\pi}{5} \right) - \cos\left( \pi \right) \right)\]
\[ = \frac{1}{4}\left( \cos\left( \frac{3\pi}{5} \right) + 1 \right)\left( \cos\left( \frac{\pi}{5} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( \cos\left( \pi - \frac{2\pi}{5} \right) + 1 \right)\left( \cos\left( \frac{\pi}{5} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( - \cos\left( \frac{2\pi}{5} \right) + 1 \right)\left( \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right) \left( \because \cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4} \right)\]
\[ = \frac{1}{4}\left( - \left( \frac{\sqrt{5} - 1}{4} \right) + 1 \right)\left( \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right) \left( \because \cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4} \right)\]
\[ = \frac{1}{4}\left( - \left( \frac{\sqrt{5} - 1}{4} \right)\left( \frac{\sqrt{5} + 1}{4} \right) - \left( \frac{\sqrt{5} - 1}{4} \right) + \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( - \left( \frac{\left( \sqrt{5} \right)^2 - 1}{16} \right) + \left( \frac{\sqrt{5} + 1 - \sqrt{5} + 1}{4} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( - \left( \frac{4}{16} \right) + \left( \frac{2}{4} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( - \frac{1}{4} + \frac{2}{4} + 1 \right)\]
\[ = \frac{1}{4}\left( \frac{- 1 + 2 + 4}{4} \right)\]
\[ = \frac{5}{16}\]
\[ = RHS\]
Thus, LHS = RHS
Hence,
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
The value of sin50° – sin70° + sin10° is equal to ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
The value of `(sin 50^circ)/(sin 130^circ)` is ______.