English

Prove that : Sin π 5 Sin 2 π 5 Sin 3 π 5 Sin 4 π 5 = 5 16 - Mathematics

Advertisements
Advertisements

Question

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 
Numerical

Solution

\[LHS = \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5}\]

\[ = \frac{1}{2}\left( 2 \sin\frac{\pi}{5} \sin\frac{4\pi}{5} \right)\frac{1}{2}\left( 2 \sin\frac{2\pi}{5} \sin\frac{3\pi}{5} \right)\]

\[ = \frac{1}{4}\left( \cos\left( \frac{\pi}{5} - \frac{4\pi}{5} \right) - \cos\left( \frac{\pi}{5} + \frac{4\pi}{5} \right) \right)\left( \cos\left( \frac{2\pi}{5} - \frac{3\pi}{5} \right) - \cos\left( \frac{2\pi}{5} + \frac{3\pi}{5} \right) \right)\]

\[ = \frac{1}{4}\left( \cos\left( \frac{- 3\pi}{5} \right) - \cos\left( \frac{5\pi}{5} \right) \right)\left( \cos\left( \frac{- \pi}{5} \right) - \cos\left( \frac{5\pi}{5} \right) \right)\]

\[ = \frac{1}{4}\left( \cos\left( \frac{3\pi}{5} \right) - \cos\left( \pi \right) \right)\left( \cos\left( \frac{\pi}{5} \right) - \cos\left( \pi \right) \right)\]

\[ = \frac{1}{4}\left( \cos\left( \frac{3\pi}{5} \right) + 1 \right)\left( \cos\left( \frac{\pi}{5} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( \cos\left( \pi - \frac{2\pi}{5} \right) + 1 \right)\left( \cos\left( \frac{\pi}{5} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( - \cos\left( \frac{2\pi}{5} \right) + 1 \right)\left( \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right) \left( \because \cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4} \right)\]

\[ = \frac{1}{4}\left( - \left( \frac{\sqrt{5} - 1}{4} \right) + 1 \right)\left( \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right) \left( \because \cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4} \right)\]

\[ = \frac{1}{4}\left( - \left( \frac{\sqrt{5} - 1}{4} \right)\left( \frac{\sqrt{5} + 1}{4} \right) - \left( \frac{\sqrt{5} - 1}{4} \right) + \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( - \left( \frac{\left( \sqrt{5} \right)^2 - 1}{16} \right) + \left( \frac{\sqrt{5} + 1 - \sqrt{5} + 1}{4} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( - \left( \frac{4}{16} \right) + \left( \frac{2}{4} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( - \frac{1}{4} + \frac{2}{4} + 1 \right)\]

\[ = \frac{1}{4}\left( \frac{- 1 + 2 + 4}{4} \right)\]

\[ = \frac{5}{16}\]

\[ = RHS\]

Thus, LHS = RHS
Hence,

\[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.3 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.3 | Q 9 | Page 42

RELATED QUESTIONS

Prove that:  \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]


Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]


\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.

 

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


Find the value of the expression `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8`

[Hint: Simplify the expression to `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]`


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of cos12° + cos84° + cos156° + cos132° is ______.


The value of sin50° – sin70° + sin10° is equal to ______.


If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×