Advertisements
Advertisements
Question
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
Options
6
1
- \[\frac{1}{6}\]
none of these
Solution
none of these
ABC is a triangle.
\[\therefore A + B + C = \pi\]
\[ \Rightarrow A + B = \pi - C\]
\[ \Rightarrow \tan\left( A + B \right) = \tan\left( \pi - C \right)\]
\[ \Rightarrow \frac{\text{ tan } A + \text{ tan } B}{1 - \text{ tan } A \text{ tan } B} = - \text{ tan } C\]
\[ \Rightarrow \text{ tan } A + \text{ tan } B = - \text{ tan } C + \text{ tan } A \text{ tan } B \text{ tan } C\]
\[ \Rightarrow \text{ tan } A + \text{ tan } B + \text{ tan } C = \text{ tan } A \text{ tan } B \text{ tan } C\]
\[ \Rightarrow 0 = \text{ tan } A \text{ tan } B \text{ tan } C [Given: \text{ tan } A \text{ tan } B \text{ tan } C = 0]\]
\[ \Rightarrow \text{ tan } A \text{ tan } B \text{ tan } C = 0\]
\[ \Rightarrow \frac{1}{\text{ tan } A \text{ tan } B \text{ tan }C} = \frac{1}{0}\]
\[ \Rightarrow \text{ cot } A \text{ cot } B \text{ cot } C \to \infty\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
The value of sin50° – sin70° + sin10° is equal to ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.