English

2 cos x − c o s 3 x − cos 5 x − 16 cos 3 x sin 2 x - Mathematics

Advertisements
Advertisements

Question

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]

Options

  • 2

  • 1

  • 0

  • -1

MCQ

Solution

0

\[\text{ We have,}  \]

\[2\text{ cos } x - \cos3x - \cos5x - 16 \cos^3 x \sin^2 x\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 16\left[ \frac{\cos3x + 3\text{ cos } x}{4} \times \frac{\left( 1 - \cos2x \right)}{2} \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \left( \cos3x + 3\text{ cos } x \right)\left( 1 - \cos2x \right) \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x - \cos3x \cos2x + 3\text{ cos } x - 3\text{ cos } x \cos2x \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x + 3\text{ cos } x \right] + 2\cos3x \cos2x + 3\left[ 2\text{ cos } x \cos2x \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x + 3\text{ cos } x \right] + \cos5x + \text{ cos } x + 3\cos3x + 3\text{ cos } x\]

\[ \left[ 2cosAcosB = \cos\left( A + B \right) + \cos\left( A - B \right) \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\cos3x - 6\text{ cos } x + \cos5x + \text{ cos } x + 3\cos3x + 3\text{ cos } x = 0\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 16 | Page 44

RELATED QUESTIONS

Prove that:  \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]


Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]

 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] . 

 

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

If  \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .

 

 


The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]


If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


The value of `cos^2 48^@ - sin^2 12^@` is ______.


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


The greatest value of sin x cos x is ______.


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×