हिंदी

2 cos x − c o s 3 x − cos 5 x − 16 cos 3 x sin 2 x - Mathematics

Advertisements
Advertisements

प्रश्न

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]

विकल्प

  • 2

  • 1

  • 0

  • -1

MCQ

उत्तर

0

\[\text{ We have,}  \]

\[2\text{ cos } x - \cos3x - \cos5x - 16 \cos^3 x \sin^2 x\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 16\left[ \frac{\cos3x + 3\text{ cos } x}{4} \times \frac{\left( 1 - \cos2x \right)}{2} \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \left( \cos3x + 3\text{ cos } x \right)\left( 1 - \cos2x \right) \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x - \cos3x \cos2x + 3\text{ cos } x - 3\text{ cos } x \cos2x \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x + 3\text{ cos } x \right] + 2\cos3x \cos2x + 3\left[ 2\text{ cos } x \cos2x \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x + 3\text{ cos } x \right] + \cos5x + \text{ cos } x + 3\cos3x + 3\text{ cos } x\]

\[ \left[ 2cosAcosB = \cos\left( A + B \right) + \cos\left( A - B \right) \right]\]

\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\cos3x - 6\text{ cos } x + \cos5x + \text{ cos } x + 3\cos3x + 3\text{ cos } x = 0\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 16 | पृष्ठ ४४

संबंधित प्रश्न

Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 


Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] . 

 

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


\[8 \sin\frac{x}{8} \cos \frac{x}{2}\cos\frac{x}{4} \cos\frac{x}{8}\]  is equal to 

 


For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]

 

If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


The value of `cos^2 48^@ - sin^2 12^@` is ______.


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


The greatest value of sin x cos x is ______.


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


The value of sin50° – sin70° + sin10° is equal to ______.


If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×