Advertisements
Advertisements
प्रश्न
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
विकल्प
2
1
0
-1
उत्तर
0
\[\text{ We have,} \]
\[2\text{ cos } x - \cos3x - \cos5x - 16 \cos^3 x \sin^2 x\]
\[ = 2\text{ cos } x - \cos3x - \cos5x - 16\left[ \frac{\cos3x + 3\text{ cos } x}{4} \times \frac{\left( 1 - \cos2x \right)}{2} \right]\]
\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \left( \cos3x + 3\text{ cos } x \right)\left( 1 - \cos2x \right) \right]\]
\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x - \cos3x \cos2x + 3\text{ cos } x - 3\text{ cos } x \cos2x \right]\]
\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x + 3\text{ cos } x \right] + 2\cos3x \cos2x + 3\left[ 2\text{ cos } x \cos2x \right]\]
\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\left[ \cos3x + 3\text{ cos } x \right] + \cos5x + \text{ cos } x + 3\cos3x + 3\text{ cos } x\]
\[ \left[ 2cosAcosB = \cos\left( A + B \right) + \cos\left( A - B \right) \right]\]
\[ = 2\text{ cos } x - \cos3x - \cos5x - 2\cos3x - 6\text{ cos } x + \cos5x + \text{ cos } x + 3\cos3x + 3\text{ cos } x = 0\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
The value of `cos^2 48^@ - sin^2 12^@` is ______.
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
The greatest value of sin x cos x is ______.
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
The value of sin50° – sin70° + sin10° is equal to ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.