हिंदी

The value of cos248∘-sin212∘ is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `cos^2 48^@ - sin^2 12^@` is ______.

विकल्प

  • `(sqrt5 + 1)/(2 sqrt2)`
  • `(sqrt5 + 1)/(5)`
  • `(sqrt5 - 1)/(8)`
  • `(sqrt5 + 1)/(8)`
MCQ
रिक्त स्थान भरें

उत्तर

The value of `cos^2 48^@ - sin^2 12^@` is `bbunderline((sqrt5 + 1)/(8))`.

Explanation:

\[\cos^2 48° - \sin^2 12°\]

\[ = \cos\left( 48° + 12° \right)\cos\left( 48° - 12° \right) \left[ \cos\left( A + B \right)\cos\left( A - B \right) = \cos^2 A - \sin^2 B \right]\]

\[ = \cos60° \cos36° \]

\[ = \frac{1}{2} \times \left( \frac{\sqrt{5} + 1}{4} \right)\]

\[ = \frac{\sqrt{5} + 1}{8}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 38 | पृष्ठ ४५

संबंधित प्रश्न

Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]

 

 


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{\pi}{3} - x \right) = 3 \cot 3x\]

 


\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 


Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


If  \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]

 

 


If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×