हिंदी

Prove That: Cos π 5 Cos 2 π 5 Cos 4 π 5 Cos 8 π 5 = − 1 16 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 
संख्यात्मक

उत्तर

\[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5}\]
\[ = \frac{1}{2\sin\frac{\pi}{5}}\left( 2\sin\frac{\pi}{5}\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by } \frac{1}{2\sin\frac{\pi}{5}} \right)\]
\[ = \frac{1}{2\sin\frac{\pi}{5}}\left( \sin\frac{2\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \sin2A = 2\text{ sin } A\text{ cos } A \right)\]
\[ = \frac{1}{4\sin\frac{\pi}{5}}\left( 2\sin\frac{2\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by } 2 \right)\]

\[= \frac{1}{4\sin\frac{\pi}{5}}\left( \sin\frac{4\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right)\]
\[ = \frac{1}{8\sin\frac{\pi}{5}}\left( 2\sin\frac{4\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by 2 }  \right)\]
\[ = \frac{1}{8\sin\frac{\pi}{5}}\left( \sin\frac{8\pi}{5}\cos\frac{8\pi}{5} \right)\]
\[ = \frac{1}{16\sin\frac{\pi}{5}}\left( 2\sin\frac{8\pi}{5}\cos\frac{8\pi}{5} \right) \left(\text{  Multiplying and dividing by 2 }  \right)\]

\[= \frac{\sin\frac{16\pi}{5}}{16\sin\frac{\pi}{5}}\]

\[ = \frac{\sin\left( 3\pi + \frac{\pi}{5} \right)}{16\sin\frac{\pi}{5}}\]

\[ = \frac{- \sin\frac{\pi}{5}}{16\sin\frac{\pi}{5}} \left[ \sin\left( 3\pi + \theta \right) = - \sin\theta \right]\]

\[ = \frac{- 1}{16}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 35 | पृष्ठ २९

संबंधित प्रश्न

Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


Write the value of \[\cos^2 76°  + \cos^2 16°  - \cos 76° \cos 16°\] 

 

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]


If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×