Advertisements
Advertisements
प्रश्न
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
उत्तर
\[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5}\]
\[ = \frac{1}{2\sin\frac{\pi}{5}}\left( 2\sin\frac{\pi}{5}\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by } \frac{1}{2\sin\frac{\pi}{5}} \right)\]
\[ = \frac{1}{2\sin\frac{\pi}{5}}\left( \sin\frac{2\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \sin2A = 2\text{ sin } A\text{ cos } A \right)\]
\[ = \frac{1}{4\sin\frac{\pi}{5}}\left( 2\sin\frac{2\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by } 2 \right)\]
\[= \frac{1}{4\sin\frac{\pi}{5}}\left( \sin\frac{4\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right)\]
\[ = \frac{1}{8\sin\frac{\pi}{5}}\left( 2\sin\frac{4\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by 2 } \right)\]
\[ = \frac{1}{8\sin\frac{\pi}{5}}\left( \sin\frac{8\pi}{5}\cos\frac{8\pi}{5} \right)\]
\[ = \frac{1}{16\sin\frac{\pi}{5}}\left( 2\sin\frac{8\pi}{5}\cos\frac{8\pi}{5} \right) \left(\text{ Multiplying and dividing by 2 } \right)\]
\[= \frac{\sin\frac{16\pi}{5}}{16\sin\frac{\pi}{5}}\]
\[ = \frac{\sin\left( 3\pi + \frac{\pi}{5} \right)}{16\sin\frac{\pi}{5}}\]
\[ = \frac{- \sin\frac{\pi}{5}}{16\sin\frac{\pi}{5}} \left[ \sin\left( 3\pi + \theta \right) = - \sin\theta \right]\]
\[ = \frac{- 1}{16}\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.