हिंदी

Prove that ππtanx+tan(π3+x)-tan(π3-x)=3tan3x - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`

योग

उत्तर

`tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`

LHS = `tan x + tan (π/3 + x) - tan(π/3 - x)`

`"LHS" = tan x + ((tan (π/3) + tan x)/(1 - tan x tan (π/3))) - ((tan (π/3) - tan x)/(1 + tan x tan (π/3)))`

We know that,

`tan (A + B) = ((tan A + tan B)/(1 - tan A tan B))` and

`tan (A _ B) = ((tan A - tan B)/(1 + tan A tan B))`

So,

`"LHS" = tan x + ((sqrt3 + tan x)/(1 - sqrt3 tan x)) - ((sqrt3 - tan x)/(1 + sqrt3 tan x))`

`"LHS" = tan x + (((1 + sqrt3 tan x)(sqrt3 + tan x) - (1 - sqrt3 tan x)(sqrt3 - tan x))/((1 - sqrt3tan x)(1 + sqrt3 tanx)))`

Simplify and cancel the similar terms of different sign in the above expression
we get,

`"LHS" = tan x + ((0 + 6tan x + 2tan x + 0)/(1 - 3tan^2x))`

`"LHS" = tan x + ((8tan x)/(1 - 3tan^2x))`

`"LHS" = (tan x (1 - 3tan^2x) + 8tan x)/(1 - 3tan^2x)`

`"LHS" = (tan x - 3tan^3x + 8tan x)/(1 - 3tan^2x)`

`"LHS" = (9tan x - 3tan^3x)/(1 - 3tan^2x)`

`"LHS" = 3((3tan x - tan^3x)/(1 - 3tan^2x))`

`"LHS" = 3 tan 3x            ...{tan 3x = (3tanx - tan^3x)/(1 - 3tan^2x)`

RHS = 3 tan 3x

Hence proved.

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.2 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.2 | Q 4 | पृष्ठ ३६

संबंधित प्रश्न

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]

 

Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


The value of `cos^2 48^@ - sin^2 12^@` is ______.


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of sin50° – sin70° + sin10° is equal to ______.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×