Advertisements
Advertisements
प्रश्न
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
उत्तर
Equation \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] can be written as \[\frac{1}{\cos\left( x + \alpha \right)} + \frac{1}{\cos\left( x - \alpha \right)} = \frac{2}{\text{ cos } x}\]
\[ \Rightarrow \frac{1}{\text{ cos } x \times cos\alpha - \text{ sin } x \times sin\alpha} + \frac{1}{\text{ cos } x \times cos\alpha + \text{ sin } x \times sin\alpha} = \frac{2}{\text{ cos } x} \left[ \because \cos\left( A + B \right) = \text{ cos } A \times \text{ cos } B - \text{ sin } A \times \text
{ sin } B \text{ and } \cos\left( A - B \right) = \text{ cos } A \times \text{ cos } B + \text{ sin } A \times \text{ sin } B \right] \]
\[ \Rightarrow \frac{2\text{ cos } x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \sin^2 x \times \sin^2 \alpha} = \frac{2}{\text{ cos } x}\]
\[ \Rightarrow \frac{\text{ cos } x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \left( 1 - \cos^2 x \right) \times \sin^2 \alpha} = \frac{1}{\text{ cos } x}\]
\[\Rightarrow \frac{\cos^2 x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \left( 1 - \cos^2 x \right) \times \sin^2 \alpha} = 1\]
\[ \Rightarrow \frac{\cos^2 x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \sin^2 \alpha + \cos^2 x \sin^2 \alpha} = 1\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x \times \cos^2 \alpha - \sin^2 \alpha + \cos^2 x \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x\left( \cos^2 \alpha + \sin^2 \alpha \right) - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x - \sin^2 \alpha\]
\[\Rightarrow \cos^2 x \times cos\alpha - \cos^2 x = - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x\left( cos\alpha - 1 \right) = - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x\left( 1 - cos\alpha \right) = \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x = \frac{\sin^2 \alpha}{2 \sin^2 \frac{\alpha}{2}} \left( \because 2 \sin^2 \frac{x}{2} = 1 - \text{ cos } x \right)\]
\[\Rightarrow \cos^2 x = \frac{4 \sin^2 \frac{\alpha}{2} \times \cos^2 \frac{\alpha}{2}}{2 \sin^2 \frac{\alpha}{2}} \left( \because \sin^2 x = 4 \sin^2 \frac{x}{2} \times \cos^2 \frac{x}{2} \right) \]
\[ \Rightarrow \text{ cos } x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.