Advertisements
Advertisements
प्रश्न
विकल्प
- \[16 \cos^4 x - 12 \cos^2 x + 1\]
- \[16 \cos^4 x + 12 \cos^2 x + 1\]
- \[16 \cos^4 x - 12 \cos^2 x - 1\]
- \[16 \cos^4 x + 12 \cos^2 x - 1\]
उत्तर
\[\text{ To find } : \frac{\sin 5x}{\text{ sin } x}\]
\[\text{ Now} , \]
\[\sin5x = \sin\left( 3x + 2x \right)\]
\[ = \sin3x\cos2x + \cos3x\sin2x\]
\[ = \left( 3\text{ sin } x - 4 \sin^3 x \right)\left( 1 - 2 \sin^2 x \right) + \left( 4 \cos^3 x - 3\text{ cos } x \right)\left( 2\text{ sin } x\text{ cos } x \right)\]
\[ = \left( 3\sin x - 6 \sin^3 x - 4 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x \cos^2 x\left( 4 \cos^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x\left( 1 - \sin^2 x \right)\left[ 4\left( 1 - \sin^2 x \right) - 3 \right]\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 2 \sin^3 x \right)\left( 4 - 4 \sin^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 8 \sin^3 x - 2 \sin^3 x + 8 \sin^5 x \right)\]
\[ = 5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x\]
\[ \therefore \frac{\sin 5x}{\text{ sin } x} = \frac{5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x}{\text{ sin } x} \]
\[ = 5 - 20 \sin^2 x + 16 \sin^4 x \]
\[ = 5 - 20\left( 1 - \cos^2 x \right) + 16 \left( 1 - \cos^2 x \right)^2 \]
\[ = 5 - 20 + 20 \cos^2 x + 16\left( 1 + \cos^4 x - 2 \cos^2 x \right)\]
\[ = 5 - 20 + 20 \cos^2 x + 16 + 16 \cos^4 x - 32 \cos^2 x\]
\[ = 16 \cos^4 x - 12 \cos^2 x + 1\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
The greatest value of sin x cos x is ______.
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of sin50° – sin70° + sin10° is equal to ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.