मराठी

sin 5 x sin x is equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{\sin 5x}{\sin x}\]  is equal to

 

पर्याय

  • \[16 \cos^4 x - 12 \cos^2 x + 1\]

     

  • \[16 \cos^4 x + 12 \cos^2 x + 1\]

     

  • \[16 \cos^4 x - 12 \cos^2 x - 1\]

     

  • \[16 \cos^4 x + 12 \cos^2 x - 1\]

     

MCQ

उत्तर

\[\text{ To find } : \frac{\sin 5x}{\text{ sin } x}\]
\[\text{ Now} , \]
\[\sin5x = \sin\left( 3x + 2x \right)\]
\[ = \sin3x\cos2x + \cos3x\sin2x\]
\[ = \left( 3\text{ sin } x - 4 \sin^3 x \right)\left( 1 - 2 \sin^2 x \right) + \left( 4 \cos^3 x - 3\text{ cos } x \right)\left( 2\text{ sin } x\text{ cos } x \right)\]
\[ = \left( 3\sin x - 6 \sin^3 x - 4 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x \cos^2 x\left( 4 \cos^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x\left( 1 - \sin^2 x \right)\left[ 4\left( 1 - \sin^2 x \right) - 3 \right]\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 2 \sin^3 x \right)\left( 4 - 4 \sin^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 8 \sin^3 x - 2 \sin^3 x + 8 \sin^5 x \right)\]
\[ = 5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x\]
\[ \therefore \frac{\sin 5x}{\text{ sin } x} = \frac{5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x}{\text{ sin } x} \]
\[ = 5 - 20 \sin^2 x + 16 \sin^4 x \]
\[ = 5 - 20\left( 1 - \cos^2 x \right) + 16 \left( 1 - \cos^2 x \right)^2 \]
\[ = 5 - 20 + 20 \cos^2 x + 16\left( 1 + \cos^4 x - 2 \cos^2 x \right)\]
\[ = 5 - 20 + 20 \cos^2 x + 16 + 16 \cos^4 x - 32 \cos^2 x\]
\[ = 16 \cos^4 x - 12 \cos^2 x + 1\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 34 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove that:  \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]

 

Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]

 

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]

 

If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 

Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]


\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

The greatest value of sin x cos x is ______.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of sin50° – sin70° + sin10° is equal to ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×