Advertisements
Advertisements
प्रश्न
पर्याय
- \[16 \cos^4 x - 12 \cos^2 x + 1\]
- \[16 \cos^4 x + 12 \cos^2 x + 1\]
- \[16 \cos^4 x - 12 \cos^2 x - 1\]
- \[16 \cos^4 x + 12 \cos^2 x - 1\]
उत्तर
\[\text{ To find } : \frac{\sin 5x}{\text{ sin } x}\]
\[\text{ Now} , \]
\[\sin5x = \sin\left( 3x + 2x \right)\]
\[ = \sin3x\cos2x + \cos3x\sin2x\]
\[ = \left( 3\text{ sin } x - 4 \sin^3 x \right)\left( 1 - 2 \sin^2 x \right) + \left( 4 \cos^3 x - 3\text{ cos } x \right)\left( 2\text{ sin } x\text{ cos } x \right)\]
\[ = \left( 3\sin x - 6 \sin^3 x - 4 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x \cos^2 x\left( 4 \cos^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x\left( 1 - \sin^2 x \right)\left[ 4\left( 1 - \sin^2 x \right) - 3 \right]\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 2 \sin^3 x \right)\left( 4 - 4 \sin^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 8 \sin^3 x - 2 \sin^3 x + 8 \sin^5 x \right)\]
\[ = 5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x\]
\[ \therefore \frac{\sin 5x}{\text{ sin } x} = \frac{5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x}{\text{ sin } x} \]
\[ = 5 - 20 \sin^2 x + 16 \sin^4 x \]
\[ = 5 - 20\left( 1 - \cos^2 x \right) + 16 \left( 1 - \cos^2 x \right)^2 \]
\[ = 5 - 20 + 20 \cos^2 x + 16\left( 1 + \cos^4 x - 2 \cos^2 x \right)\]
\[ = 5 - 20 + 20 \cos^2 x + 16 + 16 \cos^4 x - 32 \cos^2 x\]
\[ = 16 \cos^4 x - 12 \cos^2 x + 1\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The greatest value of sin x cos x is ______.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
The value of sin50° – sin70° + sin10° is equal to ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]