मराठी

If Tan X = a B , Then B Cos 2 X + a Sin 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 

पर्याय

  • a

  • b

  • \[\frac{a}{b}\]

     

  • \[\frac{b}{a}\]

     

MCQ

उत्तर

Given: \[\text{ tan } x = \frac{a}{b}\]

Now,

\[b \cos2x + a \sin2x\]
\[ = b \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) + a\left( \frac{2\text{ tan } x}{1 + \tan^2 x} \right)\]
\[ = b\left( \frac{1 - \frac{a^2}{b^2}}{1 + \frac{a^2}{b^2}} \right) + a\left( \frac{2 \times \frac{a}{b}}{1 + \frac{a^2}{b^2}} \right)\]
\[ = \frac{b\left( b^2 - a^2 \right)}{a^2 + b^2} + \frac{2 a^2 b}{a^2 + b^2}\]

\[= \frac{b^3 - a^2 b + 2 a^2 b}{a^2 + b^2}\]
\[ = \frac{b^3 + a^2 b}{a^2 + b^2}\]
\[ = \frac{b\left( b^2 + a^2 \right)}{a^2 + b^2}\]
\[ = b\]

Hence, the correct answer is option B.
Given:

\[\text{ tan } x = \frac{a}{b}\]
Now,
\[b \cos2x + a \sin2x\]
\[ = b \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) + a\left( \frac{2\text{ tan } x}{1 + \tan^2 x} \right)\]
\[ = b\left( \frac{1 - \frac{a^2}{b^2}}{1 + \frac{a^2}{b^2}} \right) + a\left( \frac{2 \times \frac{a}{b}}{1 + \frac{a^2}{b^2}} \right)\]
\[ = \frac{b\left( b^2 - a^2 \right)}{a^2 + b^2} + \frac{2 a^2 b}{a^2 + b^2}\]

\[= \frac{b^3 - a^2 b + 2 a^2 b}{a^2 + b^2}\]

\[ = \frac{b^3 + a^2 b}{a^2 + b^2}\]

\[ = \frac{b\left( b^2 + a^2 \right)}{a^2 + b^2}\]

\[ = b\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 36 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{\pi}{3} - x \right) = 3 \cot 3x\]

 


\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 


Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


The value of \[\cos \left( 36°  - A \right) \cos \left( 36° + A \right) + \cos \left( 54°  - A \right) \cos \left( 54°  + A \right)\] is 

 

The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×