Advertisements
Advertisements
प्रश्न
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
पर्याय
a
b
- \[\frac{a}{b}\]
- \[\frac{b}{a}\]
उत्तर
Given: \[\text{ tan } x = \frac{a}{b}\]
Now,
\[b \cos2x + a \sin2x\]
\[ = b \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) + a\left( \frac{2\text{ tan } x}{1 + \tan^2 x} \right)\]
\[ = b\left( \frac{1 - \frac{a^2}{b^2}}{1 + \frac{a^2}{b^2}} \right) + a\left( \frac{2 \times \frac{a}{b}}{1 + \frac{a^2}{b^2}} \right)\]
\[ = \frac{b\left( b^2 - a^2 \right)}{a^2 + b^2} + \frac{2 a^2 b}{a^2 + b^2}\]
\[= \frac{b^3 - a^2 b + 2 a^2 b}{a^2 + b^2}\]
\[ = \frac{b^3 + a^2 b}{a^2 + b^2}\]
\[ = \frac{b\left( b^2 + a^2 \right)}{a^2 + b^2}\]
\[ = b\]
Hence, the correct answer is option B.
Given:
\[ = b \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) + a\left( \frac{2\text{ tan } x}{1 + \tan^2 x} \right)\]
\[ = b\left( \frac{1 - \frac{a^2}{b^2}}{1 + \frac{a^2}{b^2}} \right) + a\left( \frac{2 \times \frac{a}{b}}{1 + \frac{a^2}{b^2}} \right)\]
\[ = \frac{b\left( b^2 - a^2 \right)}{a^2 + b^2} + \frac{2 a^2 b}{a^2 + b^2}\]
\[= \frac{b^3 - a^2 b + 2 a^2 b}{a^2 + b^2}\]
\[ = \frac{b^3 + a^2 b}{a^2 + b^2}\]
\[ = \frac{b\left( b^2 + a^2 \right)}{a^2 + b^2}\]
\[ = b\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.