मराठी

The value of ( cot x 2 − tan x 2 ) 2 ( 1 − 2 tan x cot 2 x ) is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

पर्याय

  • 1

  • 2

  • 3

  • 4

MCQ

उत्तर

\[\text{ We have } , \]
\[ \left( \cot\frac{x}{2} - \tan\frac{x}{2} \right)^2 \left( 1 - 2\text{ tan } x \cot2x \right)\]
\[\left( \cot^2 \frac{x}{2} - 2\cot\frac{x}{2}\tan\frac{x}{2} + \tan^2 \frac{x}{2} \right) \left\{ 1 - 2\text{ tan } x \left( \frac{\cot^2 x - 1}{2\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} - 2 + \tan^2 \frac{x}{2} \right)\left\{ 1 - \text{ tan } x \left( \frac{\cot^2 x - 1}{\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( 1 - \frac{\text{ cot } x - \text{ tan } x}{\text{ cot } x} \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( \tan^2 x \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right) \left( \frac{2\tan\frac{x}{2}}{1 - \tan^2 \frac{x}{2}} \right)^2\]

\[= \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 + 4 \tan^4 \frac{x}{2} - 8 \tan^2 \frac{x}{2} \right)\]
\[ = \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 - 8 \tan^2 \frac{x}{2} + 4 \tan^4 \frac{x}{2} \right)\]
\[ = \frac{4}{\left( 1 - \tan^2 \frac{x}{2} \right)^2} \left\{ \left( \tan^2 \frac{x}{2} \right)^2 - 2\left( \tan^2 \frac{x}{2} \right) + 1 \right\}\]
\[ = \frac{4 \left( \tan^2 \frac{x}{2} - 1 \right)^2}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\]
\[ = 4\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 12 | पृष्ठ ४३

संबंधित प्रश्‍न

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

If  \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]

 

 


If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] . 

 

Write the value of \[\cos^2 76°  + \cos^2 16°  - \cos 76° \cos 16°\] 

 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


\[8 \sin\frac{x}{8} \cos \frac{x}{2}\cos\frac{x}{4} \cos\frac{x}{8}\]  is equal to 

 


If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]


\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


If  \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]

 


The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×