Advertisements
Advertisements
प्रश्न
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
पर्याय
1
2
3
4
उत्तर
4
\[\text{ We have } , \]
\[ \left( \cot\frac{x}{2} - \tan\frac{x}{2} \right)^2 \left( 1 - 2\text{ tan } x \cot2x \right)\]
\[\left( \cot^2 \frac{x}{2} - 2\cot\frac{x}{2}\tan\frac{x}{2} + \tan^2 \frac{x}{2} \right) \left\{ 1 - 2\text{ tan } x \left( \frac{\cot^2 x - 1}{2\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} - 2 + \tan^2 \frac{x}{2} \right)\left\{ 1 - \text{ tan } x \left( \frac{\cot^2 x - 1}{\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( 1 - \frac{\text{ cot } x - \text{ tan } x}{\text{ cot } x} \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( \tan^2 x \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right) \left( \frac{2\tan\frac{x}{2}}{1 - \tan^2 \frac{x}{2}} \right)^2\]
\[= \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 + 4 \tan^4 \frac{x}{2} - 8 \tan^2 \frac{x}{2} \right)\]
\[ = \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 - 8 \tan^2 \frac{x}{2} + 4 \tan^4 \frac{x}{2} \right)\]
\[ = \frac{4}{\left( 1 - \tan^2 \frac{x}{2} \right)^2} \left\{ \left( \tan^2 \frac{x}{2} \right)^2 - 2\left( \tan^2 \frac{x}{2} \right) + 1 \right\}\]
\[ = \frac{4 \left( \tan^2 \frac{x}{2} - 1 \right)^2}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\]
\[ = 4\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.