Advertisements
Advertisements
प्रश्न
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
उत्तर
\[\because \frac{\pi}{2} < x < \frac{3\pi}{2}\]
\[ \therefore \sqrt{\frac{1 + \cos2x}{2}} = \sqrt{\frac{2 \cos^2 x}{2}} = \left| \text{ cos } x \right|\]
\[\text { In second quadrant } \text{ cos } x \text{ is negative } . \]
\[ \therefore \sqrt{\frac{1 + \cos2x}{2}} = - \text{ cos } x\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
The greatest value of sin x cos x is ______.
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
The value of sin50° – sin70° + sin10° is equal to ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.