मराठी

If α and β Are Acute Angles Satisfying Cos 2 α = 3 Cos 2 β − 1 3 − Cos 2 β , Then Tan α = - Mathematics

Advertisements
Advertisements

प्रश्न

If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

पर्याय

  • \[\sqrt{2} \tan \beta\]

  • \[\frac{1}{\sqrt{2}}\tan \beta\]

  • \[\sqrt{2} \cot \beta\]

  • \[\frac{1}{\sqrt{2}} \cot \beta\]

MCQ

उत्तर

\[\sqrt{2} \tan \beta\]

\[\text{ Given } : \]

\[ \cos2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos2\beta}\]

\[ \Rightarrow \frac{\cos2\alpha - 1}{\cos2\alpha + 1} = \frac{\left( 3\cos 2\beta - 1 \right) - \left( 3 - \cos2\beta \right)}{\left( 3\cos 2\beta - 1 \right) + \left( 3 - \cos2\beta \right)} \left( \text{ Using componendo and dividendo } \right)\]

\[ \Rightarrow \frac{\cos2\alpha - 1}{\cos2\alpha + 1} = \frac{4\cos 2\beta - 4}{2\cos 2\beta + 2}\]

\[ \Rightarrow - \frac{1 - \cos2\alpha}{1 + \cos2\alpha} = \frac{- 4\left( 1 - \cos 2\beta \right)}{2\left( 1 + \cos 2\beta \right)}\]

\[ \Rightarrow \frac{1 - \cos2\alpha}{1 + \cos2\alpha} = \frac{2\left( 1 - \cos 2\beta \right)}{\left( 1 + \cos 2\beta \right)}\]

\[ \Rightarrow \frac{2 \sin^2 \alpha}{2 \cos^2 \alpha} = \frac{2\left( 2 \sin^2 \beta \right)}{\left( 2 \cos^2 \beta \right)}\]

\[ \Rightarrow \tan^2 \alpha = 2 \tan^2 \beta\]

\[ \therefore \tan \alpha = \sqrt{2} \tan \beta\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 25 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


The greatest value of sin x cos x is ______.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


The value of `sin  pi/10  sin  (13pi)/10` is ______.

`["Hint: Use"  sin18^circ = (sqrt5 - 1)/4 "and"  cos36^circ = (sqrt5 + 1)/4]`


The value of sin50° – sin70° + sin10° is equal to ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×