Advertisements
Advertisements
प्रश्न
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
उत्तर
\[\text{ We have } , \]
\[\sqrt{1 - \sin2x}\]
\[ = \sqrt{\sin^2 x + \cos^2 x - 2\text{ sin } x \text{ cos } x}\]
\[ = \sqrt{\left( \text{ sin } x - \text{ cos } x \right)^2} \]
\[ = \left| \text{ sin } x - \text{ cos } x \right|\]
\[ = \text{ sin } x - \text{ cos } x\]
\[ \left[ \because \text{ sin } x > \text{ cos } x \text{ for } \frac{\pi}{4} < x < \frac{\pi}{2} \right]\]
\[ \therefore \sqrt{1 - \text{ sin } 2x} = \text{ sin } x - \text{ cos } x\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
The value of `cos^2 48^@ - sin^2 12^@` is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
The value of `(sin 50^circ)/(sin 130^circ)` is ______.