Advertisements
Advertisements
प्रश्न
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
उत्तर
\[We have, \]
\[ \cos^2 76° + \cos^2 16° - \cos76° \cos16° \]
\[ = \frac{1}{2}\left[ 1 + \cos2\left( 76 \right)° + 1 + \cos2\left( 16 \right)° - \cos\left( 76 + 16 \right)° - \cos\left( 76 - 16 \right)° \right]\]
` [ ∵ 2 cos ^2 theta = 1 + cos 2 theta and 2 cos A cos B = cos ( A +B ) + cos ( A-B)]`
\[ = \frac{1}{2}\left[ 2 + \cos152° + \cos32° - \cos92° - \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos\left( 180 - 152° \right) + \cos32° - \cos92° \right]\]
\[= \frac{1}{2}\left[ \frac{3}{2} - \cos28° + 2\sin\frac{92° + 32° }{2} \sin\frac{92° - 32° }{2} \right]\]
\[ \left[ \text{ cos } C - \text{ cos } D = 2\sin\frac{C + D}{2}\sin\frac{D - C}{2} \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + 2\sin\frac{124° }{2} \sin\frac{60° }{2} \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + 2\sin62° \sin30° \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + 2\sin62° \times \frac{1}{2} \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + \sin62° \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + \sin\left( 90 - 28 \right)° \right]\]
\[ = \frac{1}{2}\left[ \frac{3}{2} - \cos28° + \cos28° \right]\]
\[ = \frac{3}{4}\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.