Advertisements
Advertisements
प्रश्न
उत्तर
\[Here, \]
\[\tan\left( 82 . 5 \right)° = \tan\left( 90 - 7 . 5 \right)°\]
\[ = \cot\left( 7 . 5 \right)°\]
\[ = \frac{1}{\tan\left( 7 . 5 \right)°}\]
\[\text{ We know } , \]
\[\tan\left( \frac{x}{2} \right) = \frac{\text{ sin } x}{1 + \text{ cos } x}\]
\[\text{ On putting } x = 15° , \text{ we get } \]
\[\tan \left( \frac{15}{2} \right)^°= \frac{\sin15°}{1 + \cos15°}\]
\[ = \frac{\sin\left( 45 - 30 \right)° }{1 + \cos\left( 45 - 30 \right)°}\]
\[ = \frac{\sin45° \cos30° - \sin30° \cos45° }{1 + \cos45° \cos30° + \sin45° \sin30° }\]
\[ = \frac{\left( \frac{1}{\sqrt{2}} \right) \times \left( \frac{\sqrt{3}}{2} \right) - \left( \frac{1}{2} \right) \times \left( \frac{1}{\sqrt{2}} \right)}{1 + \left( \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} \right) + \left( \frac{1}{\sqrt{2}} \times \frac{1}{2} \right)}\]
\[ = \frac{\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}}{1 + \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}}\]
\[ = \frac{\sqrt{3} - 1}{2\sqrt{2} + \sqrt{3} + 1}\]
\[\text{ Now } , \]
\[\tan\left( 82 . 5 \right)° = \frac{1}{\tan\left( 7 . 5 \right)° }\]
\[ = \frac{2\sqrt{2} + \sqrt{3} + 1}{\sqrt{3} - 1}\]
\[ = \frac{2\sqrt{2} + \sqrt{3} + 1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}\]
\[ = \frac{\sqrt{3} + 1\left( 2\sqrt{2} + \sqrt{3} + 1 \right)}{\left( \sqrt{3} \right)^2 - 1^2}\]
\[ = \frac{2\sqrt{6} + 3 + \sqrt{3} + 2\sqrt{2} + \sqrt{3} + 1}{3 - 1}\]
\[ = \frac{2\sqrt{6} + 2\sqrt{3} + 2\sqrt{2} + 4}{2}\]
\[ = \sqrt{6} + \sqrt{3} + \sqrt{2} + 2\]
\[ = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6} . . . \left( 1 \right)\]
\[ = \sqrt{6} + \sqrt{3} + 2 + \sqrt{2}\]
\[ = \sqrt{3}\left( \sqrt{2} + 1 \right) + \sqrt{2}\left( \sqrt{2} + 1 \right)\]
\[ = \left( \sqrt{3} + \sqrt{2} \right)\left( \sqrt{2} + 1 \right) . . . \left( 2 \right)\]
\[\text{ From eqs } . \left( 1 \right) \text{ and } \left( 2 \right), \text{ we get} \]
\[ \tan\left( 82 . 5 \right)° = \left( \sqrt{3} + \sqrt{2} \right)\left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.