मराठी

If θ lies in the first quadrant and cosθ = 817, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ). - Mathematics

Advertisements
Advertisements

प्रश्न

If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).

बेरीज

उत्तर

cosθ = `8/17`

sinθ = `+- sqrt(1  –  cos^2theta)`

Since θ lies in the first quadrant, only a positive sign can be considered. 

⇒ sinθ = `sqrt(1 – 64/289)`

= `15/17`

Let, y = cos(30° + θ) + cos(45° – θ) + cos(120° – θ)

We know that,

cos(x + y) = cosx cosy – sinx siny

Therefore,

y = cos30° cosθ – sin30° sinθ + cos45° cosθ + sin45°sinθ + cos120° cosθ + sin120° sinθ

= `sqrt3/2(costheta + sintheta) -  1/2(costheta + sintheta) + 1/sqrt2(costheta + sintheta)`

= `(sqrt3/2 - 1/2 + 1/sqrt2)(costheta + sintheta)`

= `(sqrt3/2 - 1/2 + 1/sqrt2)(8/17 + 15/17)`

on solving,

= `((sqrt3 - 1)/2 + 1/sqrt2)(23/17)`

= `(23/17)((sqrt3 -  1)/2 + 1/sqrt2)`

= `23/17((sqrt3 -  1)/2 + 1/sqrt2)`

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 25 | पृष्ठ ५४

संबंधित प्रश्‍न

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that:  \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]

 

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

The value of sin 20° sin 40° sin 60° sin 80° is ______.


The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×