Advertisements
Advertisements
Question
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
Solution
cosθ = `8/17`
sinθ = `+- sqrt(1 – cos^2theta)`
Since θ lies in the first quadrant, only a positive sign can be considered.
⇒ sinθ = `sqrt(1 – 64/289)`
= `15/17`
Let, y = cos(30° + θ) + cos(45° – θ) + cos(120° – θ)
We know that,
cos(x + y) = cosx cosy – sinx siny
Therefore,
y = cos30° cosθ – sin30° sinθ + cos45° cosθ + sin45°sinθ + cos120° cosθ + sin120° sinθ
= `sqrt3/2(costheta + sintheta) - 1/2(costheta + sintheta) + 1/sqrt2(costheta + sintheta)`
= `(sqrt3/2 - 1/2 + 1/sqrt2)(costheta + sintheta)`
= `(sqrt3/2 - 1/2 + 1/sqrt2)(8/17 + 15/17)`
on solving,
= `((sqrt3 - 1)/2 + 1/sqrt2)(23/17)`
= `(23/17)((sqrt3 - 1)/2 + 1/sqrt2)`
= `23/17((sqrt3 - 1)/2 + 1/sqrt2)`
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]