Advertisements
Advertisements
Question
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Solution
\[LHS = \sqrt{2 + \sqrt{2 + 2\cos4x}}\]
\[ = \sqrt{2 + \sqrt{2\left( 1 + \cos4x \right)}} \]
\[ = \sqrt{2 + \sqrt{2 \times 2 \cos^2 2x}} \left( \because 2 \cos^2 2x = 1 + \cos4x \right)\]
\[ = \sqrt{2 + 2\cos2x}\]
\[= \sqrt{2\left( 1 + \cos2x \right)}\]
\[ = \sqrt{2 . 2 \cos^2 x} \left ( \because 2 \cos^2 x = 1 + \cos2x \right)\]
\[ = 2\text{ cos } x = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.