Advertisements
Advertisements
Question
Solution
\[LHS = \sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right)\]
\[ = \frac{3\text{ sin } x - \sin3x}{4} + \frac{3\sin\left( \frac{2\pi}{3} + x \right) - \sin3\left( \frac{2\pi}{3} + x \right)}{4} + \frac{3\sin\left( \frac{4\pi}{3} + x \right) - \sin3\left( \frac{4\pi}{3} + x \right)}{4} \]
\[ \left[ \sin^3 \theta = \frac{3sin\theta - \sin3\theta}{4} \right]\]
\[ = \frac{3\text{ sin } x - \sin3x}{4} + \frac{3\sin\left\{ \pi - \left( \frac{2\pi}{3} + x \right) \right\} - \sin\left( 2\pi + 3x \right)}{4} + \frac{3\sin\left\{ \pi + \left( \frac{\pi}{3} + x \right) \right\} - \sin\left( 4\pi + 3x \right)}{4}\]
\[ = \frac{1}{4}\left[ \left( 3\text{ sin } x - \sin3x \right) + \left\{ 3\sin\left( \frac{\pi}{3} - x \right) - \sin3x \right\} - \left\{ 3\sin\left( \frac{\pi}{3} + x \right) + \sin3x \right\} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - \sin3x + 3\sin\left( \frac{\pi}{3} - x \right) - 3\sin\left( \frac{\pi}{3} + x \right) - \sin3x - \sin3x \right]\]
\[= \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 3\left\{ \sin\left( \frac{\pi}{3} - x \right) - \sin\left( \frac{\pi}{3} + x \right) \right\} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 3\left\{ 2\cos\frac{\frac{\pi}{3} - x + \frac{\pi}{3} + x}{2}\sin\frac{\frac{\pi}{3} - x - \frac{\pi}{3} - x}{2} \right\} \right]\]
\[ \left[ \because sinC - sinD = 2\cos\frac{C + D}{2}\sin\frac{C - D}{2} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 6\cos\frac{\pi}{3}\sin\left( - x \right) \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\text{ sin } 3x - 3\text{ sin } x \right]\]
\[ = - \frac{3}{4}\text{ sin } x\]
\[ = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The greatest value of sin x cos x is ______.
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.