English

If Cos α + Cos β = 1 3 and Sin Sin α + Sin β = 1 4 , Prove that Cos α − β 2 = ± 5 24 - Mathematics

Advertisements
Advertisements

Question

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 

Numerical

Solution

Squaring and adding equations

\[\cos \alpha + \cos \beta = \frac{1}{3}\]  and \[\sin\alpha + \sin \beta = \frac{1}{4}\] , we get
\[\left( \cos^2 \alpha + \cos^2 \beta + 2cos\alpha \times cos\beta \right) + \left( \sin^2 \alpha + \sin^2 \beta + 2sin\alpha \times sin\beta \right) = \frac{1}{9} + \frac{1}{16}\]
\[ \Rightarrow 1 + 1 + 2\left( cos\alpha \times cos\beta + sin\alpha \times sin\beta \right) = \frac{25}{144}\]
\[ \Rightarrow 2 + 2\cos\left( \alpha - \beta \right) = \frac{25}{144} \left( \because \cos\left( A - B \right) = \text{ cos } A \times \text{ cos }B + \text{ sin } A \times \text{ sin } B \right)\]
\[ \Rightarrow \cos\left( \alpha - \beta \right) = - \frac{263}{288} . . . (1)\]
Now,
\[\cos^2 \left( \frac{\alpha - \beta}{2} \right) = \frac{1 + \cos\left( \alpha - \beta \right)}{2}\]
\[ = \frac{1 - \frac{263}{288}}{2} [\text{ From }  (1)]\]
\[ = \frac{25}{576}\]
\[ = \pm \frac{5}{24}\]
 
 
shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 42 | Page 30

RELATED QUESTIONS

Prove that:  \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]

 

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that:  \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]

 

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]

, then find the value of tan2A.

 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


\[\frac{\sin 5x}{\sin x}\]  is equal to

 


The value of `cos^2 48^@ - sin^2 12^@` is ______.


The value of sin 20° sin 40° sin 60° sin 80° is ______.


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of sin50° – sin70° + sin10° is equal to ______.


If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×