Advertisements
Advertisements
Question
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.
Solution
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is `underlinebb(1/8)`.
Explanation:
Given that: k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`
⇒ k = sin10°. sin50°. sin70°
⇒ k = sin10° sin(90° – 40°) sin(90° – 20°)
⇒ k = sin10° cos40° cos20°
⇒ k = `sin10^circ . 1/2 [2 cos 40^circ cos 20^circ]`
⇒ k = `sin 10^circ . 1/2 [cos(40^circ + 20^circ) + cos(40^circ - 20^circ)]`
⇒ k = `1/2 sin 10^circ [cos 60^circ + cos 20^circ]`
⇒ k = `1/2 sin 10^circ(1/2 + cos 20^circ)`
⇒ k = `1/4 sin 10^circ + 1/2 sin 10^circ . cos 20^circ`
⇒ k = `1/4 sin 10^circ + 1/4(2 sin 10^circ cos 20^circ)`
⇒ k = `1/4 sin 10^circ + 1/4[sin(10^circ + 20^circ) + sin(10^circ - 20^circ)]`
⇒ k = `1/4 sin 10^circ + 1/4[sin30^circ + sin(-10^circ)]`
⇒ k = `1/4 sin 10^circ + 1/4 sin 30^circ - 1/4 sin 10^circ`
= `1/4 sin 30^circ`
= `1/4 xx 1/2`
= `1/8`
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
The value of sin 20° sin 40° sin 60° sin 80° is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
The value of sin50° – sin70° + sin10° is equal to ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of `(sin 50^circ)/(sin 130^circ)` is ______.