Advertisements
Advertisements
Question
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
Solution
\[RHS = 8\left( \text{ cos } x - cos \alpha \right) \left( \text{ cos } x + cos\alpha \right) \left( \text{ cos } x - sin\alpha \right) \left( \text{ cos } x + sin\alpha \right)\]
\[ = 8\left( \cos^2 x - \cos^2 \alpha \right) \left( \cos^2 x - \sin^2 \alpha \right)\]
\[ = 8\left( \cos^4 x - \cos^2 x \times \sin^2 \alpha - \cos^2 \alpha \times \cos^2 x + \cos^2 \alpha \times \sin^2 \alpha \right)\]
\[ = 8\left\{ \cos^4 x - \cos^2 x\left( \sin^2 \alpha + \cos^2 \alpha \right) + \cos^2 \alpha \times \sin^2 \alpha \right\}\]
\[ = 8\left\{ \cos^4 x - \cos^2 x + \cos^2 \alpha \times \left( 1 - \cos^2 \alpha \right) \right\}\]
\[ = 8\left\{ \cos^4 x - \cos^2 x + \cos^2 \alpha - \cos^4 \alpha \right\}\]
\[ = 8\left\{ \cos^2 x\left( \cos^2 x - 1 \right) + \cos^2 \alpha \times \left( 1 - \cos^2 \alpha \right) \right\}\]
\[= 8\left\{ \frac{1}{2} \cos^2 x\left( 2 \cos^2 x - 2 \right) + \frac{1}{2} \cos^2 \alpha \times \left( 2 - 2 \cos^2 \alpha \right) \right\}\]
\[ = 8\left\{ \frac{1}{2} \cos^2 x\left( 2 \cos^2 x - 1 - 1 \right) - \frac{1}{2} \cos^2 \alpha \times \left( 2 \cos^2 \alpha - 1 - 1 \right) \right\}\]
\[ = 8\left\{ \frac{1}{2} \cos^2 x\left( \cos2x - 1 \right) - \frac{1}{2} \cos^2 \alpha \times \left( \cos2\alpha - 1 \right) \right\} \left( \because \cos2\alpha = 2 \cos^2 \alpha - 1 \right) \]
\[ = 8\left[ \frac{1}{4}\left\{ 2 \cos^2 x\left( \cos2x - 1 \right) - 2 \cos^2 \alpha \times \left( \cos2\alpha - 1 \right) \right\} \right]\]
\[ = 8\left[ \frac{1}{4}\left\{ \left( 1 + \cos2x \right)\left( \cos2x - 1 \right) - \left( 1 + \cos2\alpha \right)\left( \cos2\alpha - 1 \right) \right\} \right]\]
\[= 8\left[ \frac{1}{4}\left\{ \cos^2 2x - 1 - \cos^2 2\alpha + 1 \right\} \right]\]
\[ = 8\left[ \frac{1}{8}\left\{ 2 \cos^2 2x - 2 \cos^2 2\alpha \right\} \right]\]
\[ = \left[ \left\{ \left( 1 + \cos4x \right) - \left( 1 + \cos4\alpha \right) \right\} \right] \]
\[ = \left[ 1 + \cos4x - 1 - \cos4\alpha \right]\]
\[ = \cos4x - \cos4\alpha = LHS\]
\[\text{ Hence proved } .\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
The greatest value of sin x cos x is ______.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of sin50° – sin70° + sin10° is equal to ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.