English

If Cos X = − 3 5 and X Lies in the Iiird Quadrant, Find the Values of Cos X 2 , Sin X 2 , Sin 2 X . - Mathematics

Advertisements
Advertisements

Question

 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 

Numerical

Solution

\[\cos x = - \frac{3}{5}\] Using the identity
\[\cos2\theta = \cos^2 \theta - \sin^2 \theta\] , we get
\[cosx = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = 2 \cos^2 \frac{x}{2} - 1\]
\[ \Rightarrow 1 - \frac{3}{5} = 2 \cos^2 \frac{x}{2}\]
\[ \Rightarrow \frac{2}{5} = 2 \cos^2 \frac{x}{2}\]
\[ \Rightarrow \frac{1}{5} = \cos^2 \frac{x}{2}\]
\[ \Rightarrow \cos\frac{x}{2} = \pm \sqrt{\frac{1}{5}}\]
It is given that x lies in the third quadrant. This means that
\[\frac{x}{2}\]  lies in the second quadrant.
\[\therefore \cos\frac{x}{2} = - \frac{1}{\sqrt{5}}\]
Again,
\[\text{ cos } x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = \left( - \frac{1}{\sqrt{5}} \right)^2 - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = \frac{1}{5} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{1}{5} - \frac{3}{5} = - \sin^2 \frac{x}{2}\]
\[ \Rightarrow \frac{4}{5} = \sin^2 \frac{x}{2}\]
\[ \Rightarrow \sin\frac{x}{2} = \pm \frac{2}{\sqrt{5}}\]
It is given that lies in the third quadrant. This means that
\[\frac{x}{2}\]  lies in the second quadrant.
\[\therefore \sin\frac{x}{2} = \frac{2}{\sqrt{5}}\]
\[Now, \]
\[\text{ sin } x = \sqrt{1 - \cos^2 x}\]
\[ \Rightarrow \text{ sin } x = \sqrt{1 - \left( - \frac{3}{5} \right)}^2 \]
\[\text{ sin } x = \sqrt{1 - \frac{9}{25}} = \pm \frac{4}{5}\]
Since x lies in the third quadrant, sinx is negative.
\[\therefore \text{ sin } x = - \frac{4}{5}\]
\[ \Rightarrow \sin2x = 2\text{ sin } x\text{ cos } x\]
\[ \Rightarrow \sin2x = 2 \times \left( - \frac{4}{5} \right) \times \left( - \frac{3}{5} \right)\]
\[ \Rightarrow \sin2x = \frac{24}{25}\]
 
 

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 28.1 | Page 29

RELATED QUESTIONS

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Prove that:  \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]

 

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]

 

Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


\[8 \sin\frac{x}{8} \cos \frac{x}{2}\cos\frac{x}{4} \cos\frac{x}{8}\]  is equal to 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


If \[\cos 2x + 2 \cos x = 1\]  then, \[\left( 2 - \cos^2 x \right) \sin^2 x\]  is equal to 

 
 

For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

The value of `cos^2 48^@ - sin^2 12^@` is ______.


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of cos12° + cos84° + cos156° + cos132° is ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×