हिंदी

If Cos X = − 3 5 and X Lies in the Iiird Quadrant, Find the Values of Cos X 2 , Sin X 2 , Sin 2 X . - Mathematics

Advertisements
Advertisements

प्रश्न

 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 

संख्यात्मक

उत्तर

\[\cos x = - \frac{3}{5}\] Using the identity
\[\cos2\theta = \cos^2 \theta - \sin^2 \theta\] , we get
\[cosx = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = 2 \cos^2 \frac{x}{2} - 1\]
\[ \Rightarrow 1 - \frac{3}{5} = 2 \cos^2 \frac{x}{2}\]
\[ \Rightarrow \frac{2}{5} = 2 \cos^2 \frac{x}{2}\]
\[ \Rightarrow \frac{1}{5} = \cos^2 \frac{x}{2}\]
\[ \Rightarrow \cos\frac{x}{2} = \pm \sqrt{\frac{1}{5}}\]
It is given that x lies in the third quadrant. This means that
\[\frac{x}{2}\]  lies in the second quadrant.
\[\therefore \cos\frac{x}{2} = - \frac{1}{\sqrt{5}}\]
Again,
\[\text{ cos } x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = \left( - \frac{1}{\sqrt{5}} \right)^2 - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{3}{5} = \frac{1}{5} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{1}{5} - \frac{3}{5} = - \sin^2 \frac{x}{2}\]
\[ \Rightarrow \frac{4}{5} = \sin^2 \frac{x}{2}\]
\[ \Rightarrow \sin\frac{x}{2} = \pm \frac{2}{\sqrt{5}}\]
It is given that lies in the third quadrant. This means that
\[\frac{x}{2}\]  lies in the second quadrant.
\[\therefore \sin\frac{x}{2} = \frac{2}{\sqrt{5}}\]
\[Now, \]
\[\text{ sin } x = \sqrt{1 - \cos^2 x}\]
\[ \Rightarrow \text{ sin } x = \sqrt{1 - \left( - \frac{3}{5} \right)}^2 \]
\[\text{ sin } x = \sqrt{1 - \frac{9}{25}} = \pm \frac{4}{5}\]
Since x lies in the third quadrant, sinx is negative.
\[\therefore \text{ sin } x = - \frac{4}{5}\]
\[ \Rightarrow \sin2x = 2\text{ sin } x\text{ cos } x\]
\[ \Rightarrow \sin2x = 2 \times \left( - \frac{4}{5} \right) \times \left( - \frac{3}{5} \right)\]
\[ \Rightarrow \sin2x = \frac{24}{25}\]
 
 

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 28.1 | पृष्ठ २९

संबंधित प्रश्न

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Prove that:  \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]

 

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 


Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

Write the value of \[\cos^2 76°  + \cos^2 16°  - \cos 76° \cos 16°\] 

 

If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]

, then find the value of tan2A.

 

 


\[8 \sin\frac{x}{8} \cos \frac{x}{2}\cos\frac{x}{4} \cos\frac{x}{8}\]  is equal to 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


The value of \[\cos \left( 36°  - A \right) \cos \left( 36° + A \right) + \cos \left( 54°  - A \right) \cos \left( 54°  + A \right)\] is 

 

The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]

 

If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of cos12° + cos84° + cos156° + cos132° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×