Advertisements
Advertisements
प्रश्न
The value of cos12° + cos84° + cos156° + cos132° is ______.
विकल्प
`1/2`
1
`-1/2`
`1/8`
उत्तर
The value of cos12° + cos84° + cos156° + cos132° is `-1/2`.
Explanation:
The given expression is cos12° + cos84° + cos156° + cos132°
(cos132° + cos12°) + (cos156° + cos84°)
= `(2cos (132^circ + 12^circ)/2 . cos (132^circ - 12^circ)/2) + (2cos (156^circ + 84^circ)/2 . cos (156^circ - 84^circ)/2)`
= 2cos72° . cos60° + 2cos120° . cos36°
= `2 cos 72^circ xx 1/2 + 2 xx (-1/2) cos 36^circ`
= cos72° – cos36°
= cos(90° – 18°) – cos36°
= sin18° – cos36°
= `(sqrt(5) - 1)/4 - (sqrt(5) + 1)/4` ......`[because sin18^circ = (sqrt(5) - 1)/4, cos 36^circ = (sqrt(5) + 1)/4]`
= `(sqrt(5) - 1 - sqrt(5) - 1)/4`
= `-1/2`
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.