Advertisements
Advertisements
प्रश्न
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
विकल्प
1
2
3
4
उत्तर
4
\[\text{ We have } , \]
\[ \left( \cot\frac{x}{2} - \tan\frac{x}{2} \right)^2 \left( 1 - 2\text{ tan } x \cot2x \right)\]
\[\left( \cot^2 \frac{x}{2} - 2\cot\frac{x}{2}\tan\frac{x}{2} + \tan^2 \frac{x}{2} \right) \left\{ 1 - 2\text{ tan } x \left( \frac{\cot^2 x - 1}{2\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} - 2 + \tan^2 \frac{x}{2} \right)\left\{ 1 - \text{ tan } x \left( \frac{\cot^2 x - 1}{\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( 1 - \frac{\text{ cot } x - \text{ tan } x}{\text{ cot } x} \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( \tan^2 x \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right) \left( \frac{2\tan\frac{x}{2}}{1 - \tan^2 \frac{x}{2}} \right)^2\]
\[= \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 + 4 \tan^4 \frac{x}{2} - 8 \tan^2 \frac{x}{2} \right)\]
\[ = \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 - 8 \tan^2 \frac{x}{2} + 4 \tan^4 \frac{x}{2} \right)\]
\[ = \frac{4}{\left( 1 - \tan^2 \frac{x}{2} \right)^2} \left\{ \left( \tan^2 \frac{x}{2} \right)^2 - 2\left( \tan^2 \frac{x}{2} \right) + 1 \right\}\]
\[ = \frac{4 \left( \tan^2 \frac{x}{2} - 1 \right)^2}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\]
\[ = 4\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.