Advertisements
Advertisements
Question
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
Options
1
2
3
4
Solution
4
\[\text{ We have } , \]
\[ \left( \cot\frac{x}{2} - \tan\frac{x}{2} \right)^2 \left( 1 - 2\text{ tan } x \cot2x \right)\]
\[\left( \cot^2 \frac{x}{2} - 2\cot\frac{x}{2}\tan\frac{x}{2} + \tan^2 \frac{x}{2} \right) \left\{ 1 - 2\text{ tan } x \left( \frac{\cot^2 x - 1}{2\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} - 2 + \tan^2 \frac{x}{2} \right)\left\{ 1 - \text{ tan } x \left( \frac{\cot^2 x - 1}{\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( 1 - \frac{\text{ cot } x - \text{ tan } x}{\text{ cot } x} \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( \tan^2 x \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right) \left( \frac{2\tan\frac{x}{2}}{1 - \tan^2 \frac{x}{2}} \right)^2\]
\[= \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 + 4 \tan^4 \frac{x}{2} - 8 \tan^2 \frac{x}{2} \right)\]
\[ = \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 - 8 \tan^2 \frac{x}{2} + 4 \tan^4 \frac{x}{2} \right)\]
\[ = \frac{4}{\left( 1 - \tan^2 \frac{x}{2} \right)^2} \left\{ \left( \tan^2 \frac{x}{2} \right)^2 - 2\left( \tan^2 \frac{x}{2} \right) + 1 \right\}\]
\[ = \frac{4 \left( \tan^2 \frac{x}{2} - 1 \right)^2}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\]
\[ = 4\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.