English

The value of ( cot x 2 − tan x 2 ) 2 ( 1 − 2 tan x cot 2 x ) is - Mathematics

Advertisements
Advertisements

Question

The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

Options

  • 1

  • 2

  • 3

  • 4

MCQ

Solution

\[\text{ We have } , \]
\[ \left( \cot\frac{x}{2} - \tan\frac{x}{2} \right)^2 \left( 1 - 2\text{ tan } x \cot2x \right)\]
\[\left( \cot^2 \frac{x}{2} - 2\cot\frac{x}{2}\tan\frac{x}{2} + \tan^2 \frac{x}{2} \right) \left\{ 1 - 2\text{ tan } x \left( \frac{\cot^2 x - 1}{2\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} - 2 + \tan^2 \frac{x}{2} \right)\left\{ 1 - \text{ tan } x \left( \frac{\cot^2 x - 1}{\text{ cot } x} \right) \right\}\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( 1 - \frac{\text{ cot } x - \text{ tan } x}{\text{ cot } x} \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right)\left( \tan^2 x \right)\]
\[\left( \cot^2 \frac{x}{2} + \tan^2 \frac{x}{2} - 2 \right) \left( \frac{2\tan\frac{x}{2}}{1 - \tan^2 \frac{x}{2}} \right)^2\]

\[= \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 + 4 \tan^4 \frac{x}{2} - 8 \tan^2 \frac{x}{2} \right)\]
\[ = \frac{1}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\left( 4 - 8 \tan^2 \frac{x}{2} + 4 \tan^4 \frac{x}{2} \right)\]
\[ = \frac{4}{\left( 1 - \tan^2 \frac{x}{2} \right)^2} \left\{ \left( \tan^2 \frac{x}{2} \right)^2 - 2\left( \tan^2 \frac{x}{2} \right) + 1 \right\}\]
\[ = \frac{4 \left( \tan^2 \frac{x}{2} - 1 \right)^2}{\left( 1 - \tan^2 \frac{x}{2} \right)^2}\]
\[ = 4\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 12 | Page 43

RELATED QUESTIONS

Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]


 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]

 

 


If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]

 

If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.

 

If  \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]

 

 


Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

If \[\cos 2x + 2 \cos x = 1\]  then, \[\left( 2 - \cos^2 x \right) \sin^2 x\]  is equal to 

 
 

For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of \[\cos \left( 36°  - A \right) \cos \left( 36° + A \right) + \cos \left( 54°  - A \right) \cos \left( 54°  + A \right)\] is 

 

The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×