English

The Value of Tan X + Tan ( π 3 + X ) + Tan ( 2 π 3 + X ) is - Mathematics

Advertisements
Advertisements

Question

The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

Options

  • 3 tan 3x

  • tan 3x

  • 3 cot 3x

  •  cot 3x

MCQ

Solution

 3 tan 3x

\[\frac{\pi}{3} = 60°, \frac{2\pi}{3} = 120° \]
\[\tan x + \tan\left( 60°  + x \right) + \tan\left( 120°  + x \right) = \tan x + \frac{\tan60°  + \text{ tan } x}{1 - \tan60° \text{ tan } x} + \frac{\tan 120°  + \tan x}{1 - \tan 120°  \text{  tan } x}\]
\[ = \tan x + \frac{\sqrt{3} + \tan x}{1 - \sqrt{3}\tan x} + \frac{\left( - \sqrt{3} + \text{ tan } x \right)}{1 + \sqrt{3}\text{ tan } x} \]
\[ = \frac{\tan x\left( 1 - 3 \tan^2 x \right) + \left( \sqrt{3} + \text{ tan } x \right)\left( 1 + \sqrt{3}\text{ tan } x \right) + \left( - \sqrt{3} + \text{ tan } x \right)\left( 1 - \sqrt{3}\text{ tan } x \right)}{1 - 3 \tan^2 x}\]
\[ = \frac{\tan x - 3 \tan^3 x + \sqrt{3} + 3\text{ tan } x + \text{ tan } x + \sqrt{3} \tan^2 x + \text{ tan } x - \sqrt{3} \tan^2 x - \sqrt{3} + 3\text{ tan } x}{1 - 3 \tan^2 x}\]
\[ = \frac{9\text{ tan } x - 3 \tan^3 x}{1 - 3 \tan^2 x}\]
\[ = \frac{3\left( 3\text{  tan } x - \tan^3 x \right)}{1 - 3 \tan^2 x}\]
\[ = 3\tan3x\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 32 | Page 45

RELATED QUESTIONS

Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]

 

Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]


Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 

Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of sin50° – sin70° + sin10° is equal to ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×