English

The Value of Cos 2 ( π 6 + X ) − Sin 2 ( π 6 − X ) is - Mathematics

Advertisements
Advertisements

Question

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

Options

  • \[\frac{1}{2} \cos 2x\]

  • 0

  • \[- \frac{1}{2} \cos 2x\]

  • \[\frac{1}{2}\]

MCQ

Solution

\[\frac{1}{2} \cos 2x\]

\[\text{ We have, } \]

\[ \cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\]

\[ = \cos^2 \left( \frac{\pi}{6} + x \right) - \cos^2 \left[ \frac{\pi}{2} - \left( \frac{\pi}{6} - x \right) \right]\]

\[ = \cos^2 \left( \frac{\pi}{6} + x \right) - \cos^2 \left( \frac{\pi}{3} + x \right)\]

\[ = \left[ \cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} + x \right) \right]\left[ \cos\left( \frac{\pi}{6} + x \right) - \cos\left( \frac{\pi}{3} + x \right) \right]\]

\[ = 2\cos\left( \frac{\frac{\pi}{6} + x + \frac{\pi}{3} + x}{2} \right) \cos\left( \frac{\frac{\pi}{6} + x - \frac{\pi}{3} - x}{2} \right) 2\sin\left( \frac{\frac{\pi}{6} + x + \frac{\pi}{3} + x}{2} \right) \sin\left( \frac{\frac{\pi}{3} + x - \frac{\pi}{6} - x}{2} \right)\]

\[ = 4\cos\left( \frac{\pi}{4} + x \right)\cos\left( - \frac{\pi}{12} \right) \sin\left( \frac{\pi}{4} + x \right) \sin\left( \frac{\pi}{12} \right)\]

\[ = 4\cos\left( \frac{\pi}{4} + x \right)\cos\left( \frac{\pi}{12} \right) \sin\left( \frac{\pi}{4} + x \right) \sin\left( \frac{\pi}{12} \right)\]

\[ = \left[ 2\sin\left( \frac{\pi}{4} + x \right)\cos\left( \frac{\pi}{4} + x \right) \right]\left[ 2 \sin\left( \frac{\pi}{12} \right)\cos\left( \frac{\pi}{12} \right) \right]\]

\[ = \sin\left( \frac{\pi}{2} + 2x \right)\sin\frac{\pi}{6}\]

\[ = \cos2x \times \frac{1}{2}\]

\[ = \frac{1}{2}\cos2x\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 20 | Page 44

RELATED QUESTIONS

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]

 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 

Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]

  

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


\[8 \sin\frac{x}{8} \cos \frac{x}{2}\cos\frac{x}{4} \cos\frac{x}{8}\]  is equal to 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


The greatest value of sin x cos x is ______.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of cos12° + cos84° + cos156° + cos132° is ______.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×