Advertisements
Advertisements
प्रश्न
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
पर्याय
\[\frac{1}{2} \cos 2x\]
0
\[- \frac{1}{2} \cos 2x\]
\[\frac{1}{2}\]
उत्तर
\[\frac{1}{2} \cos 2x\]
\[\text{ We have, } \]
\[ \cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\]
\[ = \cos^2 \left( \frac{\pi}{6} + x \right) - \cos^2 \left[ \frac{\pi}{2} - \left( \frac{\pi}{6} - x \right) \right]\]
\[ = \cos^2 \left( \frac{\pi}{6} + x \right) - \cos^2 \left( \frac{\pi}{3} + x \right)\]
\[ = \left[ \cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} + x \right) \right]\left[ \cos\left( \frac{\pi}{6} + x \right) - \cos\left( \frac{\pi}{3} + x \right) \right]\]
\[ = 2\cos\left( \frac{\frac{\pi}{6} + x + \frac{\pi}{3} + x}{2} \right) \cos\left( \frac{\frac{\pi}{6} + x - \frac{\pi}{3} - x}{2} \right) 2\sin\left( \frac{\frac{\pi}{6} + x + \frac{\pi}{3} + x}{2} \right) \sin\left( \frac{\frac{\pi}{3} + x - \frac{\pi}{6} - x}{2} \right)\]
\[ = 4\cos\left( \frac{\pi}{4} + x \right)\cos\left( - \frac{\pi}{12} \right) \sin\left( \frac{\pi}{4} + x \right) \sin\left( \frac{\pi}{12} \right)\]
\[ = 4\cos\left( \frac{\pi}{4} + x \right)\cos\left( \frac{\pi}{12} \right) \sin\left( \frac{\pi}{4} + x \right) \sin\left( \frac{\pi}{12} \right)\]
\[ = \left[ 2\sin\left( \frac{\pi}{4} + x \right)\cos\left( \frac{\pi}{4} + x \right) \right]\left[ 2 \sin\left( \frac{\pi}{12} \right)\cos\left( \frac{\pi}{12} \right) \right]\]
\[ = \sin\left( \frac{\pi}{2} + 2x \right)\sin\frac{\pi}{6}\]
\[ = \cos2x \times \frac{1}{2}\]
\[ = \frac{1}{2}\cos2x\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.