मराठी

The Value of Cos 2 ( π 6 + X ) − Sin 2 ( π 6 − X ) is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

पर्याय

  • \[\frac{1}{2} \cos 2x\]

  • 0

  • \[- \frac{1}{2} \cos 2x\]

  • \[\frac{1}{2}\]

MCQ

उत्तर

\[\frac{1}{2} \cos 2x\]

\[\text{ We have, } \]

\[ \cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\]

\[ = \cos^2 \left( \frac{\pi}{6} + x \right) - \cos^2 \left[ \frac{\pi}{2} - \left( \frac{\pi}{6} - x \right) \right]\]

\[ = \cos^2 \left( \frac{\pi}{6} + x \right) - \cos^2 \left( \frac{\pi}{3} + x \right)\]

\[ = \left[ \cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} + x \right) \right]\left[ \cos\left( \frac{\pi}{6} + x \right) - \cos\left( \frac{\pi}{3} + x \right) \right]\]

\[ = 2\cos\left( \frac{\frac{\pi}{6} + x + \frac{\pi}{3} + x}{2} \right) \cos\left( \frac{\frac{\pi}{6} + x - \frac{\pi}{3} - x}{2} \right) 2\sin\left( \frac{\frac{\pi}{6} + x + \frac{\pi}{3} + x}{2} \right) \sin\left( \frac{\frac{\pi}{3} + x - \frac{\pi}{6} - x}{2} \right)\]

\[ = 4\cos\left( \frac{\pi}{4} + x \right)\cos\left( - \frac{\pi}{12} \right) \sin\left( \frac{\pi}{4} + x \right) \sin\left( \frac{\pi}{12} \right)\]

\[ = 4\cos\left( \frac{\pi}{4} + x \right)\cos\left( \frac{\pi}{12} \right) \sin\left( \frac{\pi}{4} + x \right) \sin\left( \frac{\pi}{12} \right)\]

\[ = \left[ 2\sin\left( \frac{\pi}{4} + x \right)\cos\left( \frac{\pi}{4} + x \right) \right]\left[ 2 \sin\left( \frac{\pi}{12} \right)\cos\left( \frac{\pi}{12} \right) \right]\]

\[ = \sin\left( \frac{\pi}{2} + 2x \right)\sin\frac{\pi}{6}\]

\[ = \cos2x \times \frac{1}{2}\]

\[ = \frac{1}{2}\cos2x\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 20 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]

 

Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]

 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] . 

 

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

If \[\cos 2x + 2 \cos x = 1\]  then, \[\left( 2 - \cos^2 x \right) \sin^2 x\]  is equal to 

 
 

If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If  \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]

 


If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of `sin  pi/10  sin  (13pi)/10` is ______.

`["Hint: Use"  sin18^circ = (sqrt5 - 1)/4 "and"  cos36^circ = (sqrt5 + 1)/4]`


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×