मराठी

If Sin α + Sin β = a and Cos α + Cos β = B , Prove that (Ii) Cos ( α − β ) = a 2 + B 2 − 2 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 

संख्यात्मक

उत्तर

The given equations are \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\]

\[\text{ On squaring } sin\alpha + sin\beta = \text{ a and }  cos\alpha + cos\beta = \text{ b and adding them, we get} \]
\[ \sin^2 \alpha + \sin^2 \beta + 2 \times sin\alpha sin\beta + \cos^2 \alpha + \cos^2 \beta + 2 \times cos\alpha cos\beta = a^2 + b^2 \]
\[ \Rightarrow 1 + 1 + 2\left( sin\alpha sin\beta + cos\alpha cos\beta \right) = a^2 + b^2 \]
\[ \Rightarrow 2\left( sin\alpha sin\beta + cos\alpha cos\beta \right) = a^2 + b^2 - 2\]
\[ \Rightarrow 2\cos\left( \alpha - \beta \right) = a^2 + b^2 - 2 \left( \because \cos\left( A - B \right) = sinAsinB + cosAcosB \right)\]
\[ \Rightarrow \cos\left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 38.2 | पृष्ठ २९

संबंधित प्रश्‍न

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.

 

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

Write the value of \[\cos^2 76°  + \cos^2 16°  - \cos 76° \cos 16°\] 

 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


\[8 \sin\frac{x}{8} \cos \frac{x}{2}\cos\frac{x}{4} \cos\frac{x}{8}\]  is equal to 

 


\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\]  is equal to


The greatest value of sin x cos x is ______.


The value of `sin  pi/10  sin  (13pi)/10` is ______.

`["Hint: Use"  sin18^circ = (sqrt5 - 1)/4 "and"  cos36^circ = (sqrt5 + 1)/4]`


The value of sin50° – sin70° + sin10° is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×