Advertisements
Advertisements
प्रश्न
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
उत्तर
\[LHS = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{3\pi}{15} \cos\frac{5\pi}{15} \cos\frac{6\pi}{15} \cos\frac{7\pi}{15}\]
\[ = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15}\left( \cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right) \times \left( - \cos\frac{8\pi}{15} \right)\]
\[ = - \frac{1}{2}\left[ \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{1}{2} \times \left( \cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{1}{2} \times \frac{2^3}{2^4 \sin\frac{\pi}{15}}\left[ 2\sin\frac{\pi}{15}\cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{2}{2^2 \times \sin\frac{3\pi}{15}} \left( 2\sin\frac{3\pi}{15}\cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{2^3}{132\sin\frac{\pi}{15}}\left[ \sin\frac{2\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{2}{4\sin\frac{3\pi}{15}} \left( \sin\frac{6\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{2^2}{32\sin\frac{\pi}{15}}\left[ 2\sin\frac{2\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{1}{4\sin\frac{3\pi}{15}} \left( 2\sin\frac{6\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[= - \frac{2}{32\sin\frac{\pi}{15}}\left[ \sin\frac{8\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{\sin\frac{12\pi}{15}}{4\sin\frac{3\pi}{15}}\]
\[ = - \frac{1}{32\sin\frac{\pi}{15}}\left[ \sin\frac{16\pi}{15} \right] \times \frac{\sin\frac{12\pi}{15}}{4\sin\frac{3\pi}{15}}\]
\[ = - \frac{\sin\left( \pi + \frac{\pi}{15} \right)}{128\sin\frac{\pi}{15}} \times \frac{\sin\left( \pi - \frac{3\pi}{15} \right)}{\sin\frac{3\pi}{15}}\]
\[ = - \frac{- \sin\frac{\pi}{15}}{128\sin\frac{\pi}{15}} \times \frac{\sin\frac{3\pi}{15}}{\sin\frac{3\pi}{15}}\]
\[ = \frac{1}{128}\]
\[ = RHS\]
\[\text{ Hence proved} .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
The value of sin50° – sin70° + sin10° is equal to ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.