Advertisements
Advertisements
प्रश्न
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
उत्तर
\[ \Rightarrow \left( \frac{1}{4} \right)^2 = 1 - \cos^2 x\]
\[ \Rightarrow \frac{1}{16} - 1 = - \cos^2 x\]
\[ \Rightarrow \frac{15}{16} = \cos^2 x\]
\[ \Rightarrow \text{ cos } x = \pm \frac{\sqrt{15}}{4}\]
Since x lies in the 2nd quadrant, cos x is negative.
\[ \Rightarrow - \frac{\sqrt{15}}{8} = \cos^2 \frac{x}{2} - \frac{1}{2}\]
\[ \Rightarrow \cos^2 \frac{x}{2} = \frac{4 - \sqrt{15}}{8}\]
\[ \Rightarrow \cos\frac{x}{2} = \pm \frac{4 - \sqrt{15}}{8}\]
\[ \Rightarrow - \frac{\sqrt{15}}{4} = $\left( \sqrt{\frac{4 - \sqrt{15}}{8}} \right)^2$ - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{\sqrt{15}}{4} = $\frac{4 - \sqrt{15}}{8}$ - \sin^2 \frac{x}{2}\]
\[ \Rightarrow \sin^2 \frac{x}{2} = \frac{4 + \sqrt{15}}{8}\]
\[ \Rightarrow \sin\frac{x}{2} = \pm \sqrt{\frac{4 + \sqrt{15}}{8}} = \sqrt{\frac{4 + \sqrt{15}}{8}} \]
\[ = \frac{\sqrt{\frac{4 + \sqrt{15}}{8}}}{\sqrt{\frac{4 - \sqrt{15}}{8}}} = \sqrt{\frac{4 + \sqrt{15}}{4 - \sqrt{15}}}\]
\[ = \sqrt{\frac{\left( 4 + \sqrt{15} \right)\left( 4 + \sqrt{15} \right)}{\left( 4 - \sqrt{15} \right)\left( 4 + \sqrt{15} \right)}}\]
\[ = \frac{4 + \sqrt{15}}{4^2 - \left( \sqrt{15} \right)^2} = \frac{4 + \sqrt{15}}{16 - 15} = 4+\sqrt{15}\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.