English

If 0 ≤ X ≤ π and X Lies in the Iind Quadrant Such that Sin X = 1 4 . Find the Values of Cos X 2 , Sin X 2 and Tan X 2 - Mathematics

Advertisements
Advertisements

Question

 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 

Numerical

Solution

\[\sin x = \frac{1}{4}\]
\[\therefore \text{ sin } x = \sqrt{1 - \cos^2 x}\]
\[ \Rightarrow \left( \frac{1}{4} \right)^2 = 1 - \cos^2 x\]
\[ \Rightarrow \frac{1}{16} - 1 = - \cos^2 x\]
\[ \Rightarrow \frac{15}{16} = \cos^2 x\]
\[ \Rightarrow \text{ cos } x = \pm \frac{\sqrt{15}}{4}\]
Since x lies in the 2nd quadrant, cos x is negative.
Thus,
\[\text{ cos } x = - \frac{\sqrt{15}}{4}\]
Now, using the identity
\[\text{ cos } x = 2 \cos^2 \frac{x}{2} - 1\] , we get 
\[- \frac{\sqrt{15}}{4} = 2 \cos^2 \frac{x}{2} - 1\]
\[ \Rightarrow - \frac{\sqrt{15}}{8} = \cos^2 \frac{x}{2} - \frac{1}{2}\]
\[ \Rightarrow \cos^2 \frac{x}{2} = \frac{4 - \sqrt{15}}{8}\]
\[ \Rightarrow \cos\frac{x}{2} = \pm \frac{4 - \sqrt{15}}{8}\]
Since x lies in the 2nd quadrant and \[\frac{x}{2}\]  lies in the 1st quadrant, \[\cos\frac{x}{2}\]  is positive.
\[\therefore \cos\frac{x}{2} = \frac{4 - \sqrt{15}}{8}\]
Again,
\[\text { cos } x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{\sqrt{15}}{4} = $\left( \sqrt{\frac{4 - \sqrt{15}}{8}} \right)^2$ - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{\sqrt{15}}{4} = $\frac{4 - \sqrt{15}}{8}$ - \sin^2 \frac{x}{2}\]
\[ \Rightarrow \sin^2 \frac{x}{2} = \frac{4 + \sqrt{15}}{8}\]
\[ \Rightarrow \sin\frac{x}{2} = \pm \sqrt{\frac{4 + \sqrt{15}}{8}} = \sqrt{\frac{4 + \sqrt{15}}{8}} \]
Now,
\[\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\]
\[ = \frac{\sqrt{\frac{4 + \sqrt{15}}{8}}}{\sqrt{\frac{4 - \sqrt{15}}{8}}} = \sqrt{\frac{4 + \sqrt{15}}{4 - \sqrt{15}}}\]
\[ = \sqrt{\frac{\left( 4 + \sqrt{15} \right)\left( 4 + \sqrt{15} \right)}{\left( 4 - \sqrt{15} \right)\left( 4 + \sqrt{15} \right)}}\]
\[ = \frac{4 + \sqrt{15}}{4^2 - \left( \sqrt{15} \right)^2} = \frac{4 + \sqrt{15}}{16 - 15} = 4+\sqrt{15}\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 30.1 | Page 29

RELATED QUESTIONS

Prove that:  \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]


Prove that:  \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]

 

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{\pi}{3} - x \right) = 3 \cot 3x\]

 


Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

Write the value of \[\cos^2 76°  + \cos^2 16°  - \cos 76° \cos 16°\] 

 

If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]

, then find the value of tan2A.

 

 


If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


The value of `cos^2 48^@ - sin^2 12^@` is ______.


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


Find the value of the expression `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8`

[Hint: Simplify the expression to `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]`


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of cos12° + cos84° + cos156° + cos132° is ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×