English

Prove that: cos 6 ° cos 42 ° cos 66 ° cos 78 ° = 1 16 - Mathematics

Advertisements
Advertisements

Question

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 
Numerical

Solution

\[LHS = \cos6°  \cos42°   \cos66°   \cos78° \]
\[ = \frac{1}{4}\left( 2\cos6°  \cos66°   \right)\left( 2\cos42°  \cos78°   \right) \]
\[ = \frac{1}{4}\left( \cos72°  + \cos60°  \right)\left( \cos120°  + \cos36°  \right) \left[ \because 2\text{ cos }A\text{ cos } B = \cos\left( A + B \right) + \cos\left( A - B \right) \right] \]
\[ = \frac{1}{4}\left\{ \cos\left( 90°  - 72°  \right) + \frac{1}{2} \right\}\left\{ - \frac{1}{2} + \frac{\sqrt{5} + 1}{4} \right\}\]

\[= \frac{1}{4}\left( \sin18°   + \frac{1}{2} \right)\left( - \frac{1}{2} + \frac{\sqrt{5} + 1}{4} \right)\]
\[ = \frac{1}{4}\left( \frac{\sqrt{5} - 1}{4} + \frac{1}{2} \right)\left( \frac{\sqrt{5} + 1}{4} - \frac{1}{2} \right)\]
\[ = \frac{1}{4}\left( \frac{\sqrt{5} - 1 + 2}{4} \right)\left( \frac{\sqrt{5} + 1 - 2}{4} \right)\]
\[ = \frac{1}{64}\left( \sqrt{5} + 1 \right)\left( \sqrt{5} - 1 \right)\]
\[ = \frac{1}{64}\left( 5 - 1 \right)\]
\[ = \frac{1}{16} = RHS\]
\[\text{ Hence proved }  .\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.3 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.3 | Q 7 | Page 42

RELATED QUESTIONS

Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]

 

Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

Write the value of \[\cos^2 76°  + \cos^2 16°  - \cos 76° \cos 16°\] 

 

If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


If  \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .

 

 


The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\]  is equal to


If  \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]

 


The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]

 

If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


The greatest value of sin x cos x is ______.


The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of cos12° + cos84° + cos156° + cos132° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×