English

Prove That: Cos π 5 Cos 2 π 5 Cos 4 π 5 Cos 8 π 5 = − 1 16 - Mathematics

Advertisements
Advertisements

Question

Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 
Numerical

Solution

\[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5}\]
\[ = \frac{1}{2\sin\frac{\pi}{5}}\left( 2\sin\frac{\pi}{5}\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by } \frac{1}{2\sin\frac{\pi}{5}} \right)\]
\[ = \frac{1}{2\sin\frac{\pi}{5}}\left( \sin\frac{2\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \sin2A = 2\text{ sin } A\text{ cos } A \right)\]
\[ = \frac{1}{4\sin\frac{\pi}{5}}\left( 2\sin\frac{2\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by } 2 \right)\]

\[= \frac{1}{4\sin\frac{\pi}{5}}\left( \sin\frac{4\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right)\]
\[ = \frac{1}{8\sin\frac{\pi}{5}}\left( 2\sin\frac{4\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} \right) \left( \text{ Multiplying and dividing by 2 }  \right)\]
\[ = \frac{1}{8\sin\frac{\pi}{5}}\left( \sin\frac{8\pi}{5}\cos\frac{8\pi}{5} \right)\]
\[ = \frac{1}{16\sin\frac{\pi}{5}}\left( 2\sin\frac{8\pi}{5}\cos\frac{8\pi}{5} \right) \left(\text{  Multiplying and dividing by 2 }  \right)\]

\[= \frac{\sin\frac{16\pi}{5}}{16\sin\frac{\pi}{5}}\]

\[ = \frac{\sin\left( 3\pi + \frac{\pi}{5} \right)}{16\sin\frac{\pi}{5}}\]

\[ = \frac{- \sin\frac{\pi}{5}}{16\sin\frac{\pi}{5}} \left[ \sin\left( 3\pi + \theta \right) = - \sin\theta \right]\]

\[ = \frac{- 1}{16}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 35 | Page 29

RELATED QUESTIONS

Prove that:  \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]


Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]

 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

If  \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .

 

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


The value of sin 20° sin 40° sin 60° sin 80° is ______.


The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×